Quickstart
A quick example how to learn a model on a given dataset.
# Import library
from d3graph import d3graph, vec2adjmat
# Create example network
source = ['node A','node F','node B','node B','node B','node A','node C','node Z']
target = ['node F','node B','node J','node F','node F','node M','node M','node A']
weight = [5.56, 0.5, 0.64, 0.23, 0.9, 3.28, 0.5, 0.45]
# Convert to adjacency matrix
adjmat = vec2adjmat(source, target, weight=weight)
# Initialize
d3 = d3graph()
# Proces adjmat
d3.graph(adjmat)
# Plot
d3.show()
# Make changes in node properties
d3.set_node_properties(color=adjmat.columns.values, label=['node 1','node 2','node 3','node 4','node 5','node 6','node 7'])
# Plot
d3.show(filepath='c://temp/')
Installation
Create environment
If desired, install d3graph
from an isolated Python environment using conda:
conda create -n env_d3graph python=3.8
conda activate env_d3graph
Install via pip
:
pip install d3graph
Install directly from github
:
pip install git+https://github.com/erdogant/d3graph
Uninstalling
If you want to remove your d3graph
installation with your environment, it can be as following:
# List all the active environments. d3graph should be listed.
conda env list
# Remove the d3graph environment
conda env remove --name d3graph
# List all the active environments. d3graph should be absent.
conda env list