Input
Make scaterplot.
- param x:
1D Coordinates x-axis.
- type x:
numpy array
- param y:
1D Coordinates y-axis.
- type y:
numpy array
- param z:
1D Coordinates z-axis.
- type z:
numpy array
- param s:
Size of the samples.
- type s:
Int or list/array of sizes with same size as X
- param c:
Color of samples in RGB colors.
- type c:
list/array of RGB colors with same size as X
- param labels:
labels of the samples.
- type labels:
list of labels with same size as X
- param marker:
- Marker for the samples.
‘x’ : All data points get this marker
(‘.’, ‘o’, ‘v’, ‘^’, ‘<’, ‘>’, ‘8’, ‘s’, ‘p’, ‘*’, ‘h’, ‘H’, ‘D’, ‘d’, ‘P’, ‘X’) : Specify per sample the marker type.
[0,3,0,1,2,1,..] : It is also possible to provide a list of labels. The markers will be assigned accordingly.
- type marker:
list/array of strings (default: ‘o’).
- param alpha:
The alpha blending value, between 0 (transparent) and 1 (opaque).
- type alpha:
float, default: 0.8
- param edgecolors:
- The edge color of the marker. Possible values:
‘face’: The edge color will always be the same as the face color.
‘none’: No patch boundary will be drawn.
‘#FFFFFF’ : A color or sequence of colors.
- type edgecolors:
(default: ‘face’)
- param gradient:
Hex color to make a lineair gradient for the scatterplot. ‘#FFFFFF’
- type gradient:
String, (default: None)
- param density:
Include the kernel density in the scatter plot.
- type density:
Bool (default: False)
- param density_on_top:
True : The density is the highest layer. False : The density is the lowest layer.
- type density_on_top:
bool, (default: False)
- param xlabel:
Xlabel. The default is None.
- type xlabel:
String, optional
- param ylabel:
Ylabel. The default is None.
- type ylabel:
String, optional
- param title:
Title of the figure. The default is None.
- type title:
String, optional
- param fontsize:
The fontsize of the y labels that are plotted in the graph. The default is 16.
- type fontsize:
String, optional
- param fontcolor:
None : Use same colorscheme as for c ‘#000000’ : If the input is a single color, all fonts will get this color.
- type fontcolor:
list/array of RGB colors with same size as X (default : None)
- param grid:
False or None : Do not plot grid True : Set axis color to: ‘#dddddd’ ‘#dddddd’ : Specify color with hex
- type grid:
str or bool (default: False)
- param norm:
Normalize datapoints. The default is False.
- type norm:
Bool, optional
- param legend:
None: Set automatically based number of labels. False : Disable. True : Best position. 1 : ‘upper right’ 2 : ‘upper left’ 3 : ‘lower left’ 4 : ‘lower right’
- type legend:
int, default: 0
- param jitter:
- Add jitter to data points as random normal data. Values of 0.01 is usually good for one-hot data seperation.
None or False: Do not add jitter
True : adds 0.01
0.05 : Specify the amount jitter to add.
- type jitter:
float, default: None
- param cmap:
‘Set1’ (default) ‘Set2’ ‘rainbow’ ‘bwr’ Blue-white-red ‘binary’ or ‘binary_r’ ‘seismic’ Blue-white-red ‘Blues’ white-to-blue ‘Reds’ white-to-red ‘Pastel1’ Discrete colors ‘Paired’ Discrete colors ‘Set1’ Discrete colors
- type cmap:
String, optional
- param figsize:
Figure size. The default is (15,10).
- type figsize:
tuple, optional
- param visible:
Visible status of the Figure. When False, figure is created on the background.
- type visible:
Bool, default: True
- param args_density:
Dictionary containing arguments for kernel density plotting.
- type args_density:
dict()
- rtype:
Fig, ax
Examples
>>> # Import library
>>> from scatterd import scatterd, import_example
>>>
>>> # Import example
>>> df = import_example()
>>>
>>> # Simple scatter
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], edgecolor='#FFFFFF')
>>>
>>> # Scatter with labels
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'])
>>>
>>> # Scatter with labels
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'])
>>>
>>> # Scatter with gradient
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], z=df['tsneY'], labels=df['labx'], gradient='#FFFFFF')
>>>
>>> # Change cmap
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'], gradient='#FFFFFF', cmap='Set2')
>>>
>>> # Scatter with density
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'], density=True)
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'], density=False, gradient='#FFFFFF', edgecolor='#FFFFFF')
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'], density=True, gradient='#FFFFFF', edgecolor='#FFFFFF')
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'], density=True, gradient='#FFFFFF', c=None)
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'], density=True, density_on_top=True, args_density={'alpha': 0.3}, gradient='#FFFFFF', edgecolor='#FFFFFF', grid=True, fontweight='normal', fontsize=26, legend=2)
>>>
>>> # Scatter with density and gradient
>>> fig, ax = scatterd(df['tsneX'], df['tsneY'], labels=df['labx'], density=True, gradient='#FFFFFF')
>>>
References
Documentation: https://erdogant.github.io/scatterd/
Colormap: https://matplotlib.org/examples/color/colormaps_reference.html