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Functional mapping and annotation of genetic
associations with FUMA
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A main challenge in genome-wide association studies (GWAS) is to pinpoint possible
causal variants. Results from GWAS typically do not directly translate into causal variants
because the majority of hits are in non-coding or intergenic regions, and the presence of
linkage disequilibrium leads to effects being statistically spread out across multiple variants.
Post-GWAS annotation facilitates the selection of most likely causal variant(s). Multiple
resources are available for post-GWAS annotation, yet these can be time consuming and do
not provide integrated visual aids for data interpretation. We, therefore, develop FUMA:
an integrative web-based platform using information from multiple biological resources
to facilitate functional annotation of GWAS results, gene prioritization and interactive
visualization. FUMA accommodates positional, expression quantitative trait loci (eQTL) and
chromatin interaction mappings, and provides gene-based, pathway and tissue enrichment
results. FUMA results directly aid in generating hypotheses that are testable in functional
experiments aimed at proving causal relations.
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n the past decade, more than 2500 genome-wide association

studies (GWAS) have identified thousands of genetic loci for

hundreds of traits'. The past 3 years have seen an explosive
increase in GWAS sample sizes>™, and these are expected to
increase even further to 0.5-1 million in the next year and
beyond®. These well-powered GWAS will not only lead to more
reliable results but also to an increase in the number of detected
disease-associated genetic loci. To benefit from these results, it is
crucial to translate genetic loci into actionable variants that can
guide functional genomics experimentation and drug target
testing®. However, since the majority of GWAS hits are located in
non-coding or intergenic regions’, direct inference from sig-
nificantly associated single-nucleotide polymorphisms (SNPs)
rarely yields functional variants. More commonly, GWAS hits
span a genomic region (“GWAS risk loci”) that is characterized
by multiple correlated SNPs, and may cover multiple closely
located genes. Some of these genes may be relevant to the disease,
while others are not, yet due to the correlated nature of closely
located genetic variants, distinguishing relevant from non-
relevant genes is often not possible based on association P-
values alone. Pinpointing the most likely relevant, causal genes
and variants requires integrating available information about
regional linkage disequilibrium (LD) patterns and functional
consequences of correlated SNPs, such as deleteriousness of
variants, but also their effects on gene expression as well as their
role in chromatin interaction sites. Ideally, functional inferences
obtained from different repositories are integrated, and annotated
SNP effects are interpreted in the broader context of genes and
molecular pathways. For example, consider a genomic risk locus
with one lead SNP associated with an increased risk for a disease,
and several dozen other SNPs in LD with the lead SNP that also
show a low association P-value, spanning multiple genes. If none
of these tested SNPs and none of the other (not tested but known)
SNPs in LD with the lead SNP are known to have a functional
consequence (i.e., altering expression of a gene, affecting a
binding site or violating the protein structure), no causal gene can
be indicated. However, if one or several of the SNPs are known to
affect the function of one of the genes in the area, but not the
other genes, then that single gene has a higher probability of
being functionally related to the disease. Pinpointing which and
how genes are affected by SNPs associated with a trait is crucial in
increasing our insight into the biological mechanisms underlying
that trait. Interpreting SNP-trait associations requires adding
functional information from several resources and repositories
such as, e.g., the Genotype-Tissue Expression (GTEx)®, Ency-
clopedia of DNA Elements (ENCODE)”, Roadmap Epigenomics
Project!’, or chromatin interaction information'!.

In practice, the extraction and interpretation of the relevant
biological information from available repositories is not always
straightforward, and can be time consuming as well as error prone.
We have, therefore, developed FUMA, which functionally annotates
GWAS findings and prioritizes the most likely causal SNPs and
genes using information from 18 biological data repositories and
tools. Gene prioritization is based on a combination of positional
mapping, expression quantitative trait loci (eQTL) mapping and
chromatin interaction mapping. Results are visualized to facilitate
quick insight into the implicated molecular functions. FUMA is
available as an online tool at http://fuma.ctglab.nl, where users can
customize settings to for example only use exonic SNPs for anno-
tation, or only use SNPs that are eQTLs in specific tissues for the
annotation based on expression data. As input, FUMA requires
GWAS summary statistics and outputs include multiple tables and
figures containing extensive information on, e.g., functionality of
SNPs in genomic risk loci, including protein-altering consequences,
gene-expression influences, open-chromatin states as well as three-
dimensional (3D) chromatin interactions. The online tool includes

2

interactive figures that can be used to explore associations in more
depth and aids, e.g., in identifying multiple lines of evidence
pointing to the same prioritized gene, or in connecting hits in
several genes via biological pathways.

Results

Overview of FUMA web application. FUMA incorporates 18
biological data repositories and tools to process GWAS summary
statistics and provide a variety of annotations (Supplementary
Table 1). To accomplish this task, FUMA consists of two separate
processes described in detail below.

The core function of FUMA is the SNP2GENE process (Fig.1)
in which SNPs are annotated with their biological functionality
and mapped to genes based on positional, eQTL and chromatin
interaction information of SNPs. First, based on the provided
summary statistics (input format is available in Supplementary
Note 1), independent significant SNPs and their surrounding
genomic loci are identified by FUMA depending on LD structure,
and define lead SNPs and genomic risk loci (Methods).
Independent significant SNPs and SNPs that are in LD with the
independent significant SNPs are then annotated for functional
consequences on gene functions (based on Ensembl genes (build
85) using ANNOVAR!?), deleteriousness score (CADD scorel3),
potential regulatory functions (RegulomeDB score'* and 15-core
chromatin state predicted by ChromHMM!> for 127 tissue/cell
types™1?), effects on gene expression using eQTLs of various
tissue types and 3D structure of chromatin interactions with Hi-C
data (Methods). In addition, independent significant SNPs and
correlated SNPs are also linked to the GWAS catalog! to provide
insight into previously reported associations of the SNPs in the
risk loci with a variety of phenotypes.

Functionally annotated SNPs are subsequently mapped to
genes based on functional consequences on genes by (i) physical
position on the genome (positional mapping), (i) eQTL
associations (eQTL mapping), and (iii) 3D chromatin interactions
(chromatin interaction mapping). Gene mapping can be
controlled by setting several parameters (Supplementary Table 2)
that allow to in- or exclude specific functional categories of SNPs
(Supplementary Fig. 1). Positional mapping is used to map SNPs
based on being physically located inside a gene using a default of
10 kb windows, yet custom windows around a gene can be set by
the user. Users can select to only use SNPs that have specified
functional consequences, such as coding or splicing SNPs, to limit
the positional mapping to functionally relevant SNPs. Thus, by
selecting to exclude intronic SNPs from the positional mapping
function, genes that contain only intronic SNPs in LD of
independent significant SNPs will not be prioritized by FUMA.
eQTL mapping is used to map SNPs to genes which they show a
significant eQTL association with (i.e., the expression of that gene
is associated with allelic variation at the SNP). eQTL mapping
uses information from 4 data ref)ositories (GTEx®, Blood eQTL
browser'®, BIOS QTL browser!” and BRAINEAC!®), and is
currently based on cis-eQTLs which can map SNPs to genes up to
1 Mb apart. Users can select tissue/cell types that are relevant to
the phenotype of interest, and eQTLs can be filtered either by
nominal P-value or FDR provided by the original data sources
(Methods and Supplementary Note 2). Chromatin interaction
mapping is used to map SNPs to genes when there is a significant
chromatin interaction between the disease-associated regions and
nearby or distant genes. Chromatin interaction mapping can
involve long-range interactions as it does not have a distance
boundary as in eQTL mapping. FUMA currently contains Hi-C
data of 14 tissue types and seven cell lines from the study of
Schmitt et al.!!, yet new chromatin interaction data will be added
when it becomes available and FUMA also allows users to upload
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Fig. 1 Overview of FUMA. FUMA includes two core processes, SNP2GENE and GENE2FUNC. The input is GWAS summary statistics. SNP2GENE prioritizes
functional SNPs and genes, outputs tables (blue boxes), and creates Manhattan, quantile-quantile (QQ) and interactive regional plots (box at right
bottom). GENE2FUNC provides four outputs; a gene expression heatmap, enrichment of differentially expressed gene (DEG) sets in a certain tissue
compared to all other tissue types, overrepresentation of gene sets, and links to external biological information of input genes. All results are downloadable

as text files or high-resolution images
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Table 1 Feature comparison of bioinformatics tools and data sources
Tools Format GWAS LD Functional Regulatory eQTLs 3D Prioritize Map  Gene Pathways Prioritize Visualization
summary consequences elements chromatin SNPs SNPs expression and gene genes
statistics on genes interactions to sets
genes
LD calculation
PLINK St X X
Variant annotations
ANNOVAR St X X X X
VEP St X X X X
SCAN Web X X X X
ReglomeDB Web X X X X
HaploReg Web X X X X
Gene-based test/Gene-set analyses
VEGAS St X X X
MAGMA St X X X X
Pascal St X X X X
MAGENTA St X X X X
INRICH St X X X
DEPICT St X X X X
Visualization tools
LocusZoom St/ X X
Web
LocusTrack St/ X X X
Web
3D genome Web X X
browser
FUMA
Web X X X X X X X X X X X X
St Standalone software, Web Web-based application

their own chromatin interaction matrices, which is not limited to
Hi-C, but also accommodates ChIA-PET, 5C or Capture Hi-C
data (Methods and Supplementary Note 3). Since chromatin
interactions are often defined in a certain resolution (as a
genomic region), such as 40 kb, an interacting region may span
multiple genes. To further prioritize candidate genes from
chromatin interaction mapping, information on tissue/cell type
specific enhancer and promoter regions from the Roadmap
Epigenomics Project!” can be optionally integrated with inter-
acting regions to filters SNPs and target genes (see Methods for
details).

For each of these three mapping strategies, additional filtering
of SNPs based on functional annotations (i.e., CADD, Regulo-
meDB, and 15-core chromatin state) is optionally available
(Methods and Supplementary Table 2). For example, setting a
CADD score threshold will cause FUMA to use only highly
deleterious SNPs or filtering SNPs by RegulomeDB score or open
chromatin state prioritizes SNPs which are likely to affect
regulatory elements per one of the mapping strategies.

The three mapping strategies (positional, eQTL and chromatin
interaction mapping) result in a set of prioritized genes, based on
the GWAS input and specific user-defined filter settings. Both
eQTL and chromatin interaction mapping may lead to prioritized
genes that are not necessarily themselves located inside a genomic
risk locus, although they are linked to SNPs within a genomic risk
locus. The combination of positional mapping of deleterious
coding SNPs, eQTL mapping, and chromatin interaction mapping
across (relevant) tissue types may reveal multiple lines of evidence
pointing towards the same genes and enables to prioritize genes
that are highly likely involved in the trait of interest.

To obtain insight into putative biological mechanisms of
prioritized genes, the GENE2FUNC process annotates these genes
in biological context (Fig. 1; see Methods for details). Specifically,
biological information for each input gene is provided to gain
insight into previously associated diseases as well as drug targets by
mapping OMIM! ID and DrugBank?® ID. Tissue specific
expression patterns based on GTEx v6 RNA-seq data® for each
gene are visualized as an interactive heatmap. Beside the single gene
level analyses, overrepresentation in sets of differentially expressed
genes (DEG; sets of genes which are more (or less) expressed in a

specific tissue compared to other tissue types) for each of 53 tissue
types based on GTEx v6 RNA-seq data® is also provided to identify
tissue specificity of prioritized genes (Methods; Supplementary
Table 3). Enrichment of prioritized genes in biological pathways
and functional categories is tested using the hypergeometric test
against gene sets obtained from MsigDB?! and WikiPathways?2.
The proportions of overlapping genes, enrichment P-value and
which input genes are overlapping with the tested gene sets are
visualized in plots as well as tables, which provides quick overview
of the shared biological functions of prioritized genes.

The results of SNP2GENE and GENE2FUNC processes are
displayed as either interactive tables or plots on the web
application. Additionally, tables are downloadable as plain text
files (Supplementary Note 1) and plots are downloadable as high-
quality images in several formats (PNG, JPEG, PDF, and SVG).

FUMA covers various features of existing tools. As a variety of
bioinformatics tools have been developed to obtain insights in
GWAS results?>~2%, we compared the list of features available in
FUMA with the features available in other tools, and describe
these further below (Table 1).

LD calculation is the first step to characterize risk loci of
GWAS by computing population specific LD structure, so called
clumping which identifies independent significant SNPs and
defines the genomic risk loci. PLINK?® is the most widely used
software for this task which takes GWAS summary statistics
(requiring a reference panel) or genotype data as input. In
FUMA, this task is automated by using pairwise LD (%) of SNPs
in the reference panel (1000 genomes project phase 3%7) pre-
computed by PLINK, resulting in a list of independent significant
SNPs, lead SNPs and genomic risk loci based on the GWAS input
file. FUMA also adds SNPs to the identified risk loci that do not
have a P-value (i.e., they were not available in the GWAS input
file), but that are LD proxies of the identified lead SNPs, as these
SNPs might be causally relevant. Alternatively, users can pre-
compute lead SNPs or risk loci and upload these to FUMA.

Variant Annotation is required to obtain information on
biological consequences of SNPs in the risk loci. There are several
tools such as ANNOVAR!? and VEP?® which annotate functional
consequences on genes, and variant scores such as deleteriousness
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and phylogenetic conservations (extensive review is available in
Hou and Zhang29). Particularly for non-coding SNPs, SCAN30,
RegulomeDB!* and HaploReg®' annotate regulatory information,
such as eQTLs, enhancer/promoter regions, and transcription factor
binding sites (see Tak and Farnham®? for extensive overview).
Although SCAN and HaploReg correct for LD, the input of the
tools mentioned above is a list of SNPs of interest which does not
take genetic associations into account and thus requires pre-
processing of GWAS results by the user. FUMA performs
annotation of SNPs that are in LD of independent significant SNPs
in a single flow, and does not require additional data preformatting.

Gene-based test/gene-set analyses are methods that enable to
summarize SNP associations at the gene level and associate the set
of genes to biological pathways. For instance, VEGAS performs
permutation based simulation®*>*!, MAGMA employs multiple
linear regression®® and Pascal computes sum and maximum of
chi-squared statistics>® to obtain gene-based P-values. Addition-
ally, there are several tools that perform not only gene-based test
but also gene-set analyses using full distribution of genetic
associations (e.g, MAGMA*, MAGENTA%’, INRICH®, and
DEPICT?"). FUMA implements MAGMA gene-based analysis
and gene-set analysis on the full GWAS input data. In addition,
genes prioritized by SNP2GENE or by the user are also tested for
overrepresentation in various gene sets in GENE2FUNC process.

Visualization is one of the essential features that allows (quick)
insights into the GWAS results, e.g., summarizing annotated
information of SNPs and genes. LocusZoom is one of the most
widely used visualization tool for GWAS results which plots LD
structure of a risk locus, gene locations as well as SNP association
values*. LocusTrack is an extension of LocusZoom which also
plots additional information together such as Chip-seq and
chromatin state*!. 3D Genome Browser is a recently developed
web application which contains comprehensive 3D chromatin
interaction datasets such as Hi-C and ChIA-PET*?, though it
does not integrate with GWAS summary statistics. These tools are
primarily focused on visualization of a subset of functionally
relevant data sources. FUMA integrates results from multiple
lines of evidence and provides interactive visualization of results,
facilitating rapid interpretation.

The current lack of a single platform that integrates all possible
resources for post-GWAS annotation hampers our understanding
of GWAS results, as different GWAS studies may use a different
selection of queried resources rendering their post-GWAS
interpretation incomplete and difficult to compare. FUMA
provides a central place for a wide variety of post-GWAS
annotation strategies and to our knowledge is the most versatile
tool in doing so.

Application to GWAS of body mass index. To validate the
utility of FUMA, we applied it to summary statistics of the most
recent GWAS for body mass index (BMI; 236,231 individuals)®3.
FUMA identified 95 lead SNPs (from 223 independent significant
SNPs) across 77 genomic risk loci (Fig. 2 and Supplementary
Data 1-3), in accordance with the original study. We first con-
ducted positional mapping of deleterious coding SNPs and eQTL
mapping (Methods) which prioritized 151 unique genes; 23 genes
with deleterious coding SNPs (positional mapping), and 144
genes with eQTLs that potentially alter expression of these genes
(eQTL mapping) including 16 genes that had both deleterious
coding SNPs and eQTLs (Supplementary Data 4). The 151 genes
consist of 55 genes that were also reported in the original study*3
and 96 novel genes implicated by FUMA, including 45 genes
which are located outside the risk loci. These novel candidates
have shared biological functions with the 55 previously known
candidate genes such as “metabolism of carbohydrate”,
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Fig. 2 Overview of prioritized genes from BMI GWAS by FUMA. Starting
from the BMI GWAS summary statistics, boxes represent results of the
SNP2GENE process. The annotated SNPs include all independent lead SNPs
and SNPs which are in LD with these lead SNPs. Prioritized genes are
divided into three categories; genes that are implicated by deleterious
coding SNPs (colored pink), by eQTLs for these genes (colored blue), or by
chromatin interactions (colored green). The prioritized genes are further
categorized into previously reported genes (blue) and novel genes (red)
prioritized genes by FUMA. "These genes were not prioritized by FUMA
since they do not have either deleterious coding SNPs, eQTLs or chromatin
interactions, although they are located within GWAS risk loci

“metabolism of lipid and lipoprotein”, “immune system”, and
“calcium signaling” (Supplementary Data 5). In addition, FUMA
results showed that, although several genomic loci for BMI
included multiple prioritized genes, a single gene was prioritized
in 22 out of 43 loci which contain at least one prioritized gene
(Supplementary Fig. 2), suggesting that these 22 genes have a high
probability of being the causal gene in that region. The 22 “highly
likely causal genes” include several well-known genes for BMI
such as NEGR1, TOMM40, and TMEM]18. The strongest GWAS
association signal for BMI was on 16q.12.2 where three genes
were prioritized; FTO, RBL2, and IRX3 (Fig. 3). These three genes
were only prioritized by eQTL mapping as the positional map-
ping showed no deleterious coding SNPs located in these genes.
The original study** only mentioned FTO, because the associated
SNPs were located in this gene, however none of the associated
SNPs have a potential direct affect such as coding SNPs on FTO.
Two of the genes prioritized by FUMA (RBL2 and IRX3) are
physically located outside the genomic locus and are missed when
using conventional approaches that prioritize genes located in the
locus of interest based on LD around the top SNP. Although the
IRX3 gene was not reported in the original study*’, recent
functional work has indeed validated this as the causal gene
whose expression is affected by SNPs in the 16q.12.2 locus*

We then performed chromatin interaction mapping using
Hi-C data of 14 tissue types (Methods). FUMA prioritized 310
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Fig. 3 Regional plot of the locus 16g.12.2 of BMI GWAS. a Extended region of the FTO locus, which includes

prioritized genes RBL2 and IRX3. Genes

prioritized by FUMA are highlighted in red. b Zoomed in regional plot of FTO locus with, from the top, GWAS P-value (SNPs are colored based on r2),
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Table 2 Summary of FUMA application to three GWAS summary statistics

GWAS Risk Reported genes in the Positional eQTL Chromatin Total” Genes located Novel Loci contain
loci original study mapping mapping interaction outside the risk loci candidates prioritized genes
mapping
BMI 77 17 23 144 310 400 263 263 67
CD 71 115 39 69 199 276 161 215 55
SCz 109 349 36 54 33 13 26 35 45

*The number of unique genes mapped by one of the positional, eQTL and chromatin interaction mappings

genes (Supplementary Data 4), of which 61 genes are overlapping
with the genes prioritized by positional and/or eQTL mappings
and 232 genes are located outside of the genomic risk loci (Fig. 2).
That resulted in a total of 400 prioritized genes by combining
three mapping strategies including 330 novel candidates which
were not reported in the original study (Table 2 and
Supplementary Data 4). These novel candidates further supported
shared biological functions with previously reported known
genes, such as lipid and lipoprotein metabolism, homeostatic
process and various metabolic pathways, with a greater number of
genes compared to the mappings without Hi-C data (Supple-
mentary Data 5). Out of 400 prioritized genes, 59 genes are
mapped by both eQTLs and chromatin interactions including
IRX3 on the 16q.12.2 locus (Fig. 4), which further supports the
hypothesis that these genes are involved in the risk of BMI. Of the
48 loci that contained at least one prioritized gene from positional
and eQTL mappings, chromatin interaction mapping identified
candidate genes in additional 18 loci (Supplementary Fig. 2),
including loci mapped to known genes associated with BMI such
as MC4R, FOX03, and ADCY9. The 400 prioritized genes showed
enrichment in 9 GO terms, such as “response to zinc ion” and
“oligopeptide binding” overlapping with multiple metallothionein
and glutathione S-Transferase genes whose association with
obesity risk has been reported*>#® (Supplementary Data 6).

Thus, using BMI summary statistics, FUMA confirmed known
genes but also prioritized novel genes, including potential causal
genes located outside the GWAS risk loci of BMI, which were
missed in the original study.

Application to Crohn’s disease GWAS. To further illustrate its
utility, we applied FUMA to the summary statistics of Crohn’s
disease*” (CD; 6333 cases and 15,056 controls). With FUMA, 95
lead SNPs from 184 independent significant SNPs across 71
genomic loci were identified for CD (Supplementary Fig. 3 and
Supplementary Data 7-10). First, describing the results of posi-
tional mapping of deleterious coding SNPs and eQTL mapping,
FUMA prioritized 95 unique genes from 32 loci (Supplementary
Fig. 4), of which 39 genes were implicated by deleterious coding
SNPs and 69 were implicated by eQTLs influencing expression of
these genes (12 genes had both deleterious coding SNPs and
eQTLs; Table 2 and Supplementary Data 11). The prioritized 95
genes include 37 known candidate genes that were also reported in
the original study?” including well-known CD-related genes such as
NOD2, IL23R, and SLC22A5, while 58 genes were novel (Supple-
mentary Fig. 3; see Supplementary Note 4 and Supplementary
Figs. 5-7 for detail results). These novel candidates include 18 genes
that are physically located outside the GWAS risk loci, and the novel
candidates mainly share immune system related biological functions
with 37 previously known genes (Supplementary Data 12).
Chromatin interaction mapping using Hi-C data in small
bowel and liver prioritized 199 genes of which 18 genes are
overlapping with genes prioritized by positional and/or eQTL
mappings and 149 genes are located outside of the genomic risk
loci (Supplementary Data 11). That resulted in a total of 276
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prioritized genes including 215 novel candidates which were not
reported in the original study (Table 2 and Supplementary Fig. 3).
Of the 23 loci which are mapped to at least one gene by positional
and eQTL mappings, additional 23 loci are mapped to candidate
genes by chromatin interaction mapping, in which several of the
genes prioritized from those loci are involved in immune system
and cytokine signaling pathways (Supplementary Fig. 4 and
Supplemental Data 12). One of these 23 risk loci, the 17q12 locus
is mapped to six chemokine ligands by Hi-C in liver: CCLI,
CCL2, CCL7, CCL8, CCL11, and CCLI13. Additionally, prioritized
genes include 11 cytokines (IL4, IL5, IL10, IL19, IL23R, IL24,
IL27, IL33, ILIRLI, ILI8RI, and IL18RAP) wherein IL18RI and
IL18RAP are also mapped by eQTLs in whole blood and IL23R and
IL27 are also mapped by deleterious coding SNPs which further
supports the involvement of these cytokine genes in CD. The role of
these chemokines and cytokines in inflammatory disease has been
widely studied*® and yet, chromatin interaction mapping identified
additional relevant candidates from the risk loci. The prioritized
276 genes showed enrichment in 123 canonical pathways such as
immune system and cytokine related pathways which are known to
be highly relevant to CD* (Supplementary Data 13).

Application to schizophrenia GWAS. We also applied FUMA to
the most recent Schizophrenia (SCZ; 36,989 cases and 113,075
controls) GWAS summary statistics’, and 128 lead SNPs from
269 independent significant SNPs across 109 genomic loci were
identified (Supplementary Note 5, Supplementary Fig. 8 and
Supplementary Data 14-17). Positional mapping of deleterious
coding SNPs and eQTL mapping prioritized 84 unique genes of
which 36 genes were implicated by deleterious coding SNPs and
65 were implicated by eQTLs influencing expression of these
genes (six genes had both deleterious coding SNPs and eQTLs;
Supplementary Data 18). The prioritized 84 genes include 65
genes which were previously reported as candidates in the
original study>, while 19 genes were novel (Table 2) including 11
genes which are physically located outside the GWAS risk loci.
These 19 novel candidates have several shared biological func-
tions with 65 previously known genes, such as “matrisome” and
“neuronal system” (Supplementary Data 19). Out of 84 prior-
itized genes, 60 of them were also identified by the recent
TWAS>® and Hi-C°! studies including 10 genes which are
physically located outside the risk loci. The prioritized genes
cover 34 genomic loci out of 109 of which 20 loci are mapped to
single prioritized gene (Supplementary Fig. 9; see Supplementary
Note 5 and Supplementary Fig. 10 for detailed results). These 20
genes are highly likely to drive the association signal in the
genomic loci. These genes include CACNAIC, LRPI, PLCB2,
GRIN2A, and NMUR2, which are involved in pathways such as
Alzheimer’s disease, long-term potentiation, calcium signaling,
and transmission across chemical synapses.

Chromatin interaction mapping using Hi-C data in hippo-
campus and prefrontal cortex prioritized 33 genes of which
DPYD and WBPIL are also mapped by a deleterious coding SNP,
and VPS45 and PITPNM?2 are also mapped by eQTL in the brain
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Fig. 4 Chromatin interactions and eQTLs of BMI risk loci on chr. 16. The most outer layer is the Manhattan plot displaying SNPs with P-value < 0.05.
Candidate SNPs are colored based on the highest r? to one of the independent significant loci (red: r? > 0.8, orange: r? > 0.6). Other SNPs are colored in
gray. rsID of top SNPs per locus are labeled. The outer circle is the chromosome coordinate and genomic risk loci are highlighted in blue. Genes mapped by
either Hi-C or eQTLs are shown on the inner circle. Genes mapped by Hi-C, eQTLs are colored orange and green, respectively. Genes mapped by both are
colored red. Chromatin interaction and eQTLs are shown as links colored orange and green respectively

(Supplementary Data 18). Out of these 33 genes, 15 are located
outside of the genomic risk loci. Together with positional and
eQTL mapping, this resulted in a total of 113 candidate genes
including 35 novel candidates which are not reported in the
original study (Table 2 and Supplementary Fig. 8). The 29 genes
prioritized only by chromatin interactions have shared functions
with other genes such as “regulation of response to stress”
(RWDD3), “intracellular signal transaction” (SGSM3), and several
functions involved in regulation of transcriptions (OTUD7B and
ZBTBI18; Supplementary Data 19).

Enrichment was seen in several brain-system related pathways,
such as nicotinic acetylcholine receptors (nAChR), long-term

8

potentiation and neurotransmitter receptor binding (Supplemen-
tary Data 20). nAChR is an important neuron receptor in which
one of the subunits alpha-7 (CHRNA?) has been recently studied
as a new Schizophrenia drug target®®>3. nAChR was also
identified as enriched pathway in the recent study using Hi-C
in human cerebral cortex! that suggests potential involvement of
nAChR pathway in SCZ risk.

Discussion
We introduce a web application named FUMA that allows to
process GWAS summary statistics, and annotate, prioritize SNPs
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and genes and facilitates interpretation by providing interactive
visualizations. FUMA provides a single platform that is built on
the most popular tools for post-GWAS annotation and includes a
rich collection of data repositories to bring insights into the
phenotype of interest, and annotation in FUMA typically takes
only +30 min. For every prioritized gene, FUMA provides the
rationale for pinpointing this gene, such as for example when the
expression of the prioritized gene is altered by a SNP that is
associated with the disease of interest. Interactive regional plots
(Fig. 3 and Supplementary Figs. 5-7, 10) show which genes in a
genomic risk locus are prioritized and which genes are not, and
the annotated SNPs in the prioritized genes facilitate the gen-
eration of hypotheses for functional validation experiments. For
example, if a gene is prioritized because of an associated loss-of-
function SNP, follow-up validation experiments focusing on a
knock-out of this gene may provide disease relevant functional
information. On the other hand, if a gene is prioritized because a
risk associated allele of a SNP increases expression of this gene in
brain, then an overexpression experiment of this gene in neuronal
cell cultures would be a more relevant experiment.

The availability of biological resources that can aid in the
interpretation of GWAS results, such as Hi-C and ChIA-PET,
have dramatically increased recently and several studies have
identified novel candidates from GWAS risk loci by inte% atin,
their results for example with chromatin interactions®>*=7.
These technologies have the potential to identify distal interac-
tions of promoters and enhancers. Especially for risk loci for
which it has been difficult to identify target genes due to the
presence of gene desserts, distal interactions might point to causal
gene. Indeed, we identified additional putative causal genes by
performing chromatin interaction mapping on outcomes from
three GWAS studies (BMI, CD, and SCZ) and the additionally
identified genes based on chromatin interaction information were
mostly located outside of the risk loci, and were shown to have
shared function with known candidates. Although chromatin
interactions are highly tissue/cell type specific, as well as time
dependent, and currently available data is still limited in those
aspects, FUMA provides an option to upload custom interaction
matrices. Additionally, FUMA is built in such a way that newly
published data including 3D chromatin interactions, eQTLs and
other variant annotations can easily be included in the
SNP2GENE process. This makes FUMA a flexible web tool which
can be utilized not only for new GWAS results but also for
previously published GWAS to re-annotate risk loci with the
latest biological data sources.

In summary, FUMA provides an easy-to-use tool to func-
tionally annotate, visualize, and interpret results from genetic
association studies and to quickly gain insight into the directional
biological implications of significant genetic associations. FUMA
combines information of state-of-the-art biological data sources
in a single platform to facilitate the generation of hypotheses for
functional follow-up analysis aimed at proving causal relations
between genetic variants and diseases.

Methods

Data pre-processing. All genetic data sets used in this study are based on the hg19
human assembly and rsIDs were mapped to dbSNP build 146 if necessary. To
compute minor allele frequencies and LD structure, we used the data from the 1000
Genomes Project?”’” phase 3 (1000G). Minor allele frequency and * of pairwise
SNPs (minimum 72 = 0.05 and maximum distance between a pair of SNPs is 1 Mb)
were pre-computed using PLINK?® for each of available populations (AFR, AMR,
EAS, EUR, and SAS). Functional annotations of SNPs were obtained from the
following three repositories; CADD'3, RegulomeDB'4, and core 15-state model of
chromatin®!®15, Cis-eQTL information was obtained from the following four
different data repositories; GTEx portal v6%, Blood eQTL browser'®, BIOS QTL
Browser!”, and BRAINEAC!S, and genes were mapped to ensemble gene ID if
necessary (Supplementary Note 2). Pre-processed Hi-C data for 14 tissue types and
seven cell lines were obtained from GSE87112!! (Supplementary Note 3). Predicted
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enhancer and promoter regions for 111 epigenomes were obtained from the
Roadmap Epigenomics Projects'’. Genomic coordinate of GWAS catalog! reported
SNPs was lifted down using liftOver software from hg38 to hgl9. Normalized gene
expression data (RPKM, Read Per Kilobase per Million) from GTEx portal v6° for
53 tissue types were processed for different purposes. The details are described in
“GTEx Gene Expression Data Set” section. Curated pathways and gene sets from
MsigDB v5.22! and WikiPathways?? which are assigned entrez ID.

Characterization of genomic risk loci based on GWAS. To define genomic loci
of interest to the trait based on provided GWAS summary statistics, pre-calculated
LD structure based on 1000G of the relevant reference population (EUR for BMI,
CD and SCZ) is used. First of all, independent significant SNPs with a genome-
wide significant P-value (< 5e-8) and independent from each other at r* < 0.6 are
identified. For each independent significant SNP, all known (i.e., regardless of being
available in the GWAS input) SNPs that have 7% > 0.6 with one of the independent
significant SNPs are included for further annotation (candidate SNPs). These SNPs
may thus include SNPs that were not available in the GWAS input, but are
available in the 1000G reference panel and are in LD with an independent sig-
nificant SNP. Candidate SNPs can be filtered based on a user-defined minor allele
frequency (MAF, >0.01 by default).

Based on the identified independent significant SNPs, independent lead SNPs
are defined if they are independent from each other at r? < 0.1. Additionally, if LD
blocks of independent significant SNPs are closely located to each other (< 250 kb
based on the most right and left SNPs from each LD block), they are merged into
one genomic locus. Each genomic locus can thus contain multiple independent
significant SNPs and lead SNPs.

Besides using FUMA to determine lead SNPs based on GWAS summary
statistics, users can provide a list of pre-defined lead SNPs. In addition, users can
provide a list of pre-defined genomic regions to limit all annotations carried out by
FUMA to those regions.

Annotation of candidate SNPs in genomic risk loci. Functional consequences of
SNPs on genes are obtained by performing ANNOVAR!? (“gene-based annota-
tion”) using Ensembl genes (build 85). Note that SNPs can be annotated to more
than one gene in case of intergenic SNPs which are annotated to the two closest up-
and down-stream genes. CADD scores, RegulomeDB scores and 15-core chromatin
state are annotated to all SNPs in 1000G phase 3 by matching chromosome,
position, reference, and alternative alleles. eQTLs are also extracted by matching
chromosome, position and alleles of all independent significant SNPs and SNPs
which are in LD with one of the independent significant SNPs for each user-
selected tissue type, wherein SNPs can have multiple eQTLs for distinct genes and
tissue types (Supplementary Note 2). Information on previously known SNP-trait
associations reported in the GWAS catalog is also retrieved for all SNPs of interest
by matching chromosome and position.

Gene mapping. Gene annotation is based on Ensembl genes (build 85). To match
external gene IDs, ENSG ID is mapped to entrez ID yielding 35,808 genes which
consist of 19,436 protein-coding genes, 9249 non-coding RNA, and other 7123
genes (e.g., pseudogenes, processed transcripts, immunoglobulin genes, and T-cell
receptor genes).

Positional mapping is performed based on annotations obtained from
ANNOVAR'2 Two optional filters are provided to control the maximum distance
from SNPs to genes and select specific functional consequences of SNPs on gene.
When the former option is defined, FUMA maps SNPs to genes based on
ANNOVAR annotation and a user-defined maximum distance is applied for
intergenic SNPs. When the latter option is provided, FUMA maps only SNPs
which have selected annotations annotated by ANNOVAR (e.g., coding or splicing
SNPs).

For eQTL mapping, all independent significant SNPs and SNPs in LD of them
are mapped to eQTLs in user-defined tissue types. By default, only significant
SNP-gene pairs (false discovery rate (FDR)< 0.05) are used. Optionally, eQTLs can
be filtered based on a user-defined P-value. eQTL mapping maps SNPs to genes up
to 1 Mb apart (cis-eQTLs).

Chromatin interaction mapping is performed by overlapping independent
significant SNPs and SNPs in LD of them with one end of significantly interacting
regions in user-selected tissue/cell types. These SNPs are then mapped to genes whose
promoter regions (250 bp up- and 500 bp down-stream of transcription start site by
default) overlap with another end of the significant interactions. Optionally SNPs can
be filtered for those overlapping with predicted enhancer regions of the user-selected
epigenomes. Similarly, mapped genes can also be filtered for having promoter regions
overlap with predicted promoter regions of the user-selected epigenomes.

Optional filtering of SNPs based on functional annotations obtained in step 2 of
SNP2GENE (i.e., CADD score, RegulomeDB score, 15-core chromatin state) can be
performed for positional, eQTL and chromatin interaction mappings separately.
When any of these filters is activated, candidate SNPs are filtered primary to gene
mapping. Note that this filtering of SNPs based on functional annotations for a
certain mapping does not affect other mappings, e.g., when SNPs are filtered by
CADD score in positional mapping but not in eQTL mapping, SNPs are filtered prior
to positional mapping but eQTL mapping uses the original set of candidate SNPs.
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For mapped genes, two scores of intolerance to functional mutations are
annotated; probability of being loss-of-function intolerant (pLI)*® and non-coding
residual variation intolerance score (ncRVIS)®.

MAGMA for gene analysis and gene set analysis. FUMA uses input GWAS
summary statistics to compute gene-based P-values (gene analysis) and gene set
P-value (gene set analysis) using the MAGMA?®® tool. For gene analysis, the gene-
based P-value is computed for protein-coding genes by mapping SNPs to genes if
SNPs are located within the genes. For gene set analysis, the gene set P-value is
computed using the gene-based P-value for 4728 curated gene sets (including
canonical pathways) and 6166 GO terms obtained from MsigDB v5.2. For both
analyses, the default MAGMA setting (SNP-wise model for gene analysis and
competitive model for gene set analysis) are used, and the Bonferroni correction
(gene) or FDR (gene-set) was used to correct for multiple testing. 1000G phase 327
is used as a reference panel to calculate LD across SNPs and genes.

GTEXx gene expression data set. Normalized gene expressions (reads per kilo base
per million, RPKM) of 53 tissue types were obtained from GTEx (Supplementary
Table 3). A total of 56,320 genes was available in GTEx, which we filtered on an
average RPKM per tissue greater than or equal to 1 in at least one tissue type. This
resulted in transcripts of 28,520 genes, of which 22,146 were mapped to entrez ID
(see “Gene Mapping” section for details). In the GENE2FUNC, the heatmap of
prioritized genes displays two expression values; (i) the average log2(RPKM+1) per
tissue per gene, in which RPKM is winsorized at 50, allowing comparison of
expression level across genes and tissue types and (ii) the average of the normalized
expression (zero mean of log2(RPKM+1)) per tissue per gene allowing comparison
of expression level across tissue types within a gene.

To obtain differentially expressed gene sets (DEG; genes which are significantly
more or less expressed in a given tissue compared to others) for each of 53 tissue
type, the normalized expression (zero mean of log2(RPKM+1)) is used. Two-sided
Student’s t-tests are performed per gene per tissue against all other tissues. After the
Bonferroni correction, genes with corrected P-value < 0.05 and absolute log fold
change > 0.58 are defined as a DEG set in a given tissue, i.e., for these gene
expression in the given tissue had the largest discrepancy with expression in all
other tissues. In addition, we distinguish between genes that are upregulated and
downregulated in a specific tissue compared to other tissues, by taking the sign of ¢-
score into account. In GENE2FUNC, genes are tested against those DEG sets by
hypergeometric tests to evaluate if the prioritized genes (or a list of genes of
interest) are overrepresented in DEG sets in specific tissue types.

Gene set enrichment test. To test for overrepresentation of biological functions,
the prioritized genes (or a list of genes of interest) are tested against gene sets
obtained from MsigDB (i.e., hallmark gene sets, positional gene sets, curated gene
sets, motif gene sets, computational gene sets, GO gene sets, oncogenic signatures,
and immunologic signatures) and WikiPathways, using hypergeometric tests. The
set of background genes (i.e., the genes against which the set of prioritized genes are
tested against) is 19,283 protein-coding genes. Background genes can also be
selected from gene types as described in the “Gene Mapping” section. Custom sets
of background genes can also be provided by the users. Multiple testing correction
(i.e., Benjamini-Hochberg by default) is performed per data source of tested gene
sets (e.g., canonical pathways, GO biological processes, hallmark genes). FUMA
reports gene sets with adjusted P-value <0.05 and the number of genes that
overlap with the gene set > 1 by default.

FUMA parameters for application to GWAS summary statistics. In the
described applications, three mapping strategies were applied to GWAS summary
statistics with the following settings: positional mapping was performed by
selecting exonic and splicing SNPs with CADD score > 12.37 (defined by Kircher
et al.13) to restrict the mapping to deleterious coding SNPs. eQTL mapping was
performed using GTEx eQTLs with FDR<0.05. Chromatin interaction mapping
was performed using Hi-C data from Schmitt et al.!! and interactions were filtered
by FDR<1e-6. Tissue types used for eQTLs and chromatin interaction mappings
are described in the following section for each of three phenotypes. Other para-
meters not mentioned here were kept as default (Supplementary Table 2).

Application to BMI GWAS. Parameters were set as described in the above section
and we used eQTLs in 44 tissue types from GTEx. For chromatin interaction
mapping, Hi-C data of 14 tissue types (Adrenal, Aorta, Bladder, Dorsolateral
Prefrontal Cortex, Hippocampus, Left Ventricle, Liver, Lung, Ovary, Pancreas,
Psoas, Right Ventricle, Small Bowel and Spleen) from GSE87112 was used. Indels
were excluded. rsID was mapped to dbSNP build 146 and chromosome and
positions were extracted based on human genome hgl9 reference. Only protein-
coding genes were used in gene mapping and enrichment of DEG in 53 tissue
types, Canonical Pathways and GO terms were tested.

Application to CD GWAS. We set parameters as described above and we used
eQTLs in five tissue types from GTEx which are relevant to CD, i.e., Small Intestine,
Colon Sigmoid, Colon Transverse, Stomach, and Whole Blood. Chromatin
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interaction mapping was performed using Hi-C data of two tissue types; Liver and
Small Bowel from GSE87112. The MHC region and indels were excluded from the
analysis. Since the input GWAS summary statistics only contained results from the
discovery phase, we manually submitted the 71 reported lead SNPs to FUMA in
addition to the independent lead SNPs that were identified as described above
(Supplementary Data 7). Only protein-coding genes were used in mappings and
enrichment of DEG in 53 tissue types, Canonical Pathways and GO terms were tested.

Application to SCZ GWAS. Parameters were set as described above and eQTLs in
10 brain tissues from GTEx. Chromatin interaction mapping was performed using
Hi-C data of two brain regions; hippocampus and prefrontal cortex. The extended
MHC region (25-34 Mb), Chromosome X and indels were excluded from this
analysis. The input GWAS summary statistics are based on the discovery phase and
not all reported lead SNPs from the combined results of discovery and replication
phases reached genome-wide significance. To include all reported lead SNPs, 111
non-indel lead SNPs were provided to FUMA and additional independent lead
SNPs were identified at P < 5e-8 (Supplementary Data 14). Only protein-coding
genes were used in mappings and enrichment of DEG in 53 tissue types, Canonical
Pathways and GO terms were tested.

Code availability. Source code of FUMA web application is available through a git
repository at https://github.com/Kyoko-wtnb/FUMA-webapp/.

Data availability. Data and tools used in FUMA are all publicly available from the
following links (details are in Supplementary Table 1). dbSNP build 146 rsID
archive: ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b146_grch137p13/
database/organism_data/RsMergeArch.bcp.gz, 1000 genome phase 3 reference
panel: ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/, CADD: http://cadd.
gs.washington.edu/download, RegulomeDB: http://www.regulomedb.org/
downloads, 15-core chromatin state: http://egg2.wustl.edu/roadmap/data/
byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
, GWAS catalog: https://www.ebi.ac.uk/gwas/, GTEx v6: http://www.gtexportal.org/
home/, Blood eQTL Browser: http://genenetwork.nl/bloodeqtlbrowser/, BIOS QTL
Browser: http://genenetwork.nl/biosqtlbrowser/, BRAINEAC: http://www.braineac.
org/, HiC (GSE87112): https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE87112, promoter/enhancer regions: http://egg2.wustl.edu/roadmap/data/
byDataType/dnase/, pLI score: ftp.broadinstitute.org/pub/ExAC_release/
release0.3.1/functional_gene_constraint, ncRVIS score: http://journals.plos.org/
plosgenetics/article/file?type=supplementary&id=info:doi/10.1371/journal.
pgen.1005492.5011, MsigDB: http://software.broadinstitute.org/gsea/msigdb/,
WikiPathways: http://wikipathways.org/index.php/WikiPathways, ANNOVAR:
http://annovar.openbioinformatics.org/en/latest/, and MAGMA: https://ctg.cncr.
nl/software/magma. GWAS summary statistics used in this study is available from
the followings; BMI: http://portals.broadinstitute.org/collaboration/giant/index.
php/GIANT _consortium_data_files, CD: ftp.sanger.ac.uk/pub/consortia/
ibdgenetics/, SCZ: http://www.med.unc.edu/pgc/results-and-downloads.
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