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General Introduction 

SUMMARY 

In the last decade, tiling-array and next-generation sequencing technologies allowed quantitative measurements of 

different cellular processes, such as mRNA expression, genomic changes including deletions or amplifications, DNA-

methylation, chromatin modifications or Protein-DNA-binding interactions. Using these technologies, thousands of 

features can now be measured simultaneously in a patient cell sample. The use of for instance mRNA expression 

profiles or DNA-methylation profiles have already provided new insight into the molecular biology of patients with 

Acute Myeloid Leukemia (AML). AML is a blood cell malignancy, in which primitive myeloid cells have been 

transformed and accumulate in the bone marrow and blood. Different forms of AML exist with different molecular 

abnormalities that associate with distinct responses to therapy. Many subgroups with comparable mRNA expression 

or DNA-methylation patterns were identified. These studies also revealed the existence of novel previously undefined 

AML subtypes. Among those was a group of patients with a mutation in a gene called CEBPA. CEBPA is a gene that 

encodes the transcription factor CCAAT Enhancer Binding Protein Alpha (C/EBPα), which controls the expression of 

genes in myeloid progenitor cells. Mutated CEBPA encodes a dysfunctional C/EBPα-protein, which consequently 

results in aberrant control of “target genes”. In this thesis we focus particularly on the role of CEBPA. We studied the 

predictive and prognostic relevance of mutated CEBPA, and analyzed in a genome wide fashion the mRNA expression, 

DNA-methylation and the protein-DNA-binding levels corresponding to (mutated) CEBPA in AML. For the analysis of 

protein-DNA-binding, we developed a novel statistical methodology. With this statistical methodology we studied the 

fundamental role of (mutant) C/EBPα binding and the effect on gene expression levels. We also integrated gene 

expression with DNA-methylation profiles of hundreds of AML patients and revealed the existence of two previously 

unidentified AML subtypes. 

FROM HEALTHY TO CANCEROUS CELLS 

Cells in a living organism are designated with a functional role that can be classified by their tissue of origin. In human, 

there are many distinct cell types1,2 for which their function varies widely. In general, a cell (Figure 1A) contains a 

nucleus (Figure 1B) that contains the genetic instructions in the chromosomes which are essential for the 

development and functioning of a particular cell. In humans we count 46 individual chromosomes or 23 chromosome 

pairs (Figure 1C), which consist of DeoxyriboNucleic Acid (DNA). Stretches of the DNA with specific functions are 

denoted as “genes”3,4 (Figure 1D). In order to get a healthy functioning cell, genes need to be transcribed to messenger 

RiboNucleic Acid (mRNA, Figure 1E) and then translated into proteins5 (Figure 1F). The proteins are the functional 

units of the cell. In the human genome, approximately 23000 protein-coding genes are identified6. The function of a 

particular cell depends on the combination of genes that are in "onset" or "offset". The communication between 
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genes and proteins is part of a complex system and errors in these crucial processes are responsible for diseases such 

as cancer. A majority of genes are responsible for the maintenance of basic cellular functions7,8. Other genes encode 

for proteins that are needed for specific functions of a particular cell1. When DNA is damaged at the gene-locations, 

genes may become malfunctioning or non-functioning. When this happens, cancer may arise. Cancer is a generic term 

for a large group of diseases that have different incidence and mortality rates9.  

The one defining feature of cancer is that cells in tumorigenic state grow too fast and beyond their usual boundaries 

that may consequently result in an invasion to other body parts and organs, which is called metastasis10. Such a 

tumorigenic state can only be entered when existing fail-safe mechanisms are bypassed or are shutdown11, which is 

often due to genetic changes in genes that are controlling these mechanisms12. Two classes of genes can be 

discriminated that cause far reaching effects when damaged: oncogenes13 and tumor suppressor genes14. These genes 

do often have a role in the fail-safe mechanisms of a cell. Oncogenes will drive a cell towards tumorigenic activity once 

hyper-activated13. Conversely, shutting down a tumor suppressor gene may lead to increased tumorigenic activity as 

well14. 

Leukemia is such a cancerous disease. As in other forms of cancer, mutations are observed in regulatory genes (in 

leukemia cells). Most mutations that cause cancer are of somatic origin15, meaning that the DNA damage is acquired, 

most likely as the result of environmental or endogenous carcinogenic agents. Mutations may sometimes be inherited 

or can be gained in a situation where individuals have increased susceptibility to develop cancer. Both somatic and 

germline mutations can result into abnormal cell growth and development.  

BLOOD CELL FORMATION AND ACUTE MYELOID LEUKEMIA 

Blood cells arise from hematopoietic stem cells (HSCs), which reside in the bone marrow16. In a normal (healthy) 

situation, HSCs develops into primitive progenitor cells which may then mature into red blood cells (erythrocytes), 

platelets (thrombocytes) or different types of white blood cells (leukocytes) (Figure 2)16,17. However, mutations in 

genes can cause that HSCs or primitive lineage specific progenitor cells are unable to develop and remain immature. 

These immature cells accumulate in the blood and bone marrow causing less room for healthy blood cells. Such a 

cancerous process is called leukemia. 

Acute Myeloid Leukemia (AML) is the most common myeloid disorder in adults9, and is the disease that is central in 

this thesis. The prevalence is on average 3.5 cases per 100.000 individuals world-wide but increases with age9. The 

median age of presentation is approximately 67 years and the disease is known to be heterogeneous18, meaning that 

different forms of AML exist. As an example, there are groups of patients with chromosomal abnormalities, such as 

inversions of DNA-fragments (inv(16)) or the rearrangements of chromosomal parts that join two other separated 

genes, denoted as translocations (t(15;17), t(8;21)). Frequently such inversions and translocations cause gene fusions 

to occur, creating hybrid proteins. In other translocations, it has been suggested that a strong promoter of one gene 
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is repositioned to the coding sequence of another, resulting in overexpression of that particular gene. Other known 

abnormalities in AML are subtle mutations in cancer-critical genes, such as for Internal Tandem Duplications of FLT3 

(FLT3ITD) 19-23, nucleophosmin (NPM1)24,25 or "CCAAT enhancer binding protein alpha" (CEBPA) 26-28 (Figure 3A). These 

and many other abnormalities are nowadays used in the risk-classification of patients, i.e. to predict favorable, 

intermediate or poor treatment outcome29-32.  

The risk-classification of AML was until the late seventy’s based on the pathology and cytological examination of bone 

marrow and blood cells33. Nowadays, various subtypes of AML are known, each with different survival rates33. 

Classification of the disease is important to refine more "personalized" therapy, i.e. predicting which therapy may 

work the best for a (group of) patient(s), and thereby increase the chance to survive. However, not all AMLs can be 

classified into the known AML subtypes. To characterize the underlying abnormalities of these unclassifiable AMLs we 

first need to detect which DNA changes (i.e. mutations) and which mechanisms or pathways were involved. 

AML PATIENTS WITH ABNORMAL CEBPA EXPRESSION 

CEBPA abnormalities are investigated for more than a decade27 but only since the emerging microarray 

technology18,34, the possibilities for fast mutational screening35, and the use of large databanks of patient’s cohorts, 

fast refinement and many new insights are provided. This section introduces 1. The discovery of CEBPA mutations, 2. 

The survival and treatment response of AML patients with CEBPA mutations, 3. The use of gene expression profiles to 

predict AML with CEBPA mutations, and 4. The interactions of C/EBPα to the DNA.  

It has been shown that CEBPA mutations occur mainly in cytogenetically normal AML (CN-AML) with an incidence of 

5-14%27,28,31,36-42. Two main types of CEBPA mutations can be distinguished: N-terminal frame-shift mutations resulting 

in the translation of a 30-kDa protein only, and the C-terminal in-frame mutations in the basic zipper region affecting 

DNA-binding and homodimerization and heterodimerization28,43,44 (Figure 3A). It is known that CEBPA mutations can 

roughly be separated into two subgroups, i.e., AML patients with a single mutation (CEBPAsm) and those with double 

mutations (CEBPAdm)35,45-48. Favourable outcome is observed in AML with CEBPAdm but not for CEBPAsm 35,44, however 

it is unclear why the clinical outcome between CEBPAdm and CEBPAsm is different. In addition, the distribution of 

distinct CEBPA mutations, and presence or absence of the concurrent mutations in other genes for the same AMLs 

had not been established yet. We therefore investigating the distribution of CEBPA mutations in a large cohort of 

patients (Chapter 7). We show that in the majority of CEBPAdm AML, both alleles are mutated (Figure 3B). These 

biallelic mutations frequently harbour an N-terminal mutation on one allele and a C-terminal bZIP mutation on the 

other. In CEBPAsm AML, mutations occur mostly in the N-terminus, although single C-terminal mutants have been 

found as well (Figure 3B). We furthermore analysed in Chapter 7 the presence of concurrent mutations in CEBPAdm or 

CEBPAsm. We detected that these were significantly enriched for CEBPAsm AMLs. With this knowledge we could 

address why CEBPAdm differed in clinical outcome compared to CEBPAsm, and whether the outcome is affected by 

concurrent mutations. 
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The prognosis for AMLs with a CEBPAdm is defined as favourable; 5-years overall survival is ranging between 50% and 

70%35,44-48. These patients were consolidated with different types of therapy, such as intensive chemotherapy, 

autologous or allogeneic hematopoietic stem cell transplantation (autoHSCT or alloHSCT). After such treatment 

protocols, patients may enter a so called complete remission (CR), meaning that less than 5 percent blast cells are 

present in the bone marrow, and none can have a leukemic phenotype49,50. Relapse remains a major cause of 

treatment failure and occurs frequently within the first 2 years after entering a complete remission (CR). This has for 

instance raised the question whether a HSCT in first CR should be recommended in patients with this form of AML. 

Analyses according to type of post remission treatment in the subset of AML with mutant CEBPA, for clinical reasons 

useful, have so far not become available mainly due to limited patient numbers precluding meaningful statistical 

analyses. In Chapter 8 we studied AMLs CEBPA mutational status (age 18-60 years) in AML. The benefit of post 

remission stem cell transplantation in AML patients that harbour CEBPAdm compared to CEBPAdm AMLs which were 

not treated with stem cell transplantation was investigated. 

It has previously been discovered that CEBPAdm has a uniquely associated gene expression profile35 which stresses the 

notion to mark CEBPAdm AMLs as a distinctive disease entity. This means that these AMLs have very similar gene 

expression profiles which can subsequently be used for diagnostic purposes51, such as prediction of CEBPAdm AMLs 

given the gene expression profiles. A predictive gene signature35 has therefore been created but was hampered by 

AMLs with hypermethylation of the proximal promoter region of CEBPA34. In addition, it is unknown whether 

classification results are affected by homozygous N-terminal or C-terminal CEBPAdm mutations or because of germline 

mutations. In Chapter 7 we created a gene signature that has increased the power for CEBPAdm prediction, and we 

addressed the question whether homozygous N-terminal or C-terminal and germline CEBPAdm mutations showed 

differences in the classification.  

Although a very specific gene signature is created that describes CEBPAdm AMLs, it does not describe what the 

functional effect is of mutated CEBPA in primary AMLs. It is known that the N-terminal domain contributes to cell 

growth inhibition, whereas the C-Terminal domain that contains a basic region required for DNA-binding and a leucine 

zipper (bZIP) essential for homo and heterodimerization44,52-54. However, the functional effect of mutated CEBPA in 

primary AML cells is unknown. We studied the binding capacity of a mutated C-terminal CEBPA in Chapter 5 and 

provide data that suggest that C-terminal mutant CEBPA is capable of (in) direct binding to the DNA.  

DETECTION OF FUNCTIONAL REGIONS IN THE GENOME 

In the last decade, technology such as tiling-array hybridizations provided whole genome coverage by using probes 

and therefore useful for exploring the genome in an unbiased fashion. Tiling-array technology is valuable for different 

applications, such as 1. Protein-DNA-interaction by conducting chromatin immunoprecipitation followed by array 

(Chip) hybridization (ChIP-on-chip, Figure 1H) experiments, 2. Epigenetic modifications by Methyl-DNA 

immunoprecipitation (MeDIP-on-chip, Figure 1G) or 3. Identification of DNAse hypersensitive sites, which can be used 
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to predict regulatory elements such as promoter regions, enhancers and silencers. Each tiling-array produces 

quantitative signal intensity for each probe by the hybridization of labeled DNA. Probe intensities are illustrated by 

the different peaks in Figure 1H. Single probe-hybridization with high signal intensity suggests strong hybridization 

but it is not necessarily the result of specific hybridization of labeled DNA. Multiple contiguous probes that show 

increased signal intensity upon hybridization across a particular genomic region are more likely to be the result of true 

hybridization in a biological experiment. To detect biologically relevant genomic regions, probe intensity signals should 

be discriminated from non-specific signals. A challenge in the analysis of tiling-array data is finding those genomic 

regions where the signal significantly deviates from the general genome wide behavior. Determining these candidate 

regions is difficult as there is no "golden standard" that defines properties (e.g. signal intensity or size) of such region. 

We therefore developed a novel statistical methodology, Hypergeometric Analysis of Tiling-arrays (HAT), (Chapter 2) 

to identify candidate genomic regions in tiling-array data. The use of a dynamic window makes our model independent 

of size and therefore applicable for different biological tiling-array experiments (protein-DNA-binding, DNA-

methylation, histone modifications). We used HAT to study the binding of mutated C/EBPα (Chapter 5), wild-type 

C/EBPα (Chapter 6), and to detect viral integration sites that potentially harbour new tumour suppressor genes 

(Chapter 4).  

HAT showed to be successful55-57 for the analysis of tiling-array data. However, in the past few years Next-Generation 

Sequencing technology (NGS) has rapidly replaced tiling-array hybridization because of the increased resolution with 

which the interactions can be measured. Instead of using probes, the immunoprecipitated DNA-fragments in a ChIP 

experiment are sequenced and in turn aligned to the reference genome. We developed (Chapter 3) HATSEQ 

(Hypergeometric Analysis of Tiling-arrays and Sequence data), which is an extremely scaled version of HAT that can 

work on a base resolution, and has proven to be accurate in the detection of potential candidate regions. 

DETECTION OF AML SUBTYPES BY USING GENE EXPRESSION AND DNA-

METHYLATION PROFILES 

Ideally, when it comes to cancer, we want to reconstruct all the changes that occurred for a single cancer to determine 

exactly where, what and how it went wrong in the DNA. This requires measuring various different processes, such as 

DNA-methylation58 (Figure 1G) or mRNA expression levels18 (Figure 1E). Although this is possible, the analysis of large 

data sets is not a routine process. In our simplified scheme (Figure 1) we show with traffic-lights that DNA-methylation 

can be seen as a logical “AND” operator for the onset or offset of genes (Figure 1D). However, this process is not 

deterministic but rather a stochastic process, and may depend on other factors (such protein-DNA-binding, Figure 

1H), and therefore difficult for routine analysis. These processes (Figure 1G, H, E and F) are so far investigated 

thoroughly but mostly independently from each other18,58-60. Gene expression profiling (GEP) has been used to analyse 

the mRNA gene expression profiles of hundreds of AML patients18. For the same patients, DNA-methylation profiles 

(DMP) are also measured58. Both technologies provided multiple data sets which could lead to novel insights into 
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AML34,61,62, such as the discovery of novel AML subgroups. We hypothesized that the combined data results in specific 

patterns in cancer cells that may uncover novel AML subgroups. In Chapter 9 we developed an approach to combine 

the two data sets and we identified two novel AML subgroups that could not be identified using GEP18 or DMP58 alone. 

SCOPE AND AIM OF THE THESIS 

The thesis presents work divided into four sections. The first section (Chapter 2, 3 and 4) deals with the detection of 

candidate regions in the genome using tiling-array and next-generation sequencing technology. These technologies 

have been developed to accurately determine potential functional regions in the genome, such as for the binding of 

proteins that regulate transcription. Chapter 2 describes the statistical method that we developed to detect candidate 

regions for tiling-array technology. Although the many successes of tiling-array technology, next-generation 

sequencing technology rapidly replaces tiling-arrays because of the increased resolution with which the interactions 

can be measured. In Chapter 3 we demonstrate how we optimized our methodology to work on a base resolution, 

and to detect potential candidate regions in the genome. This Chapter is followed by a case study where viral 

integration sites are identified that potentially harbour new tumour suppressor genes in a so called MeDIP-on-chip 

dataset (Chapter 4). 

The second section (Chapter 5 and 6) of the thesis is concerned with the experimental interactions of C/EBPα in an 

inducible myeloid cell line model. In Chapter 5 we used our novel methodology, and asked the question whether we 

could identify potential targets of mutated C/EBPα. In AML patients it has previously been shown that silencing of 

CEBPA leads to cells with myeloid/T-lymphoid features. However, the exact role of C/EBPα in this process is unknown. 

In Chapter 6 we asked the question whether the newly developed computational technologies can be of use to study 

the mechanism by which silencing of CEBPA may play a role in transformation of cells with myeloid/T-lymphoid 

characteristics.  

The third section of the thesis (Chapter 7 and 8) focuses on AML patients with mutations in CEBPA. It is known that 

mutations in CEBPA occur in a biallelic (double) or mono allelic (single) fashion. AML patients with CEBPA double 

mutations are associated with favourable outcome whereas patients with single mutations in CEBPA showed 

unfavourable outcome. In Chapter 7 we evaluated the outcome of CEBPA double and single mutations with respect 

to other concurrent mutations. In Chapter 8 we asked the question whether the favourable prognosis of AML with 

CEBPA double mutation is to be attributed to a distinct post remission strategy, i.e. treatment of allogeneic or 

autologous hemapoetic stem cell transplantation (alloHSCT, autoHSCT respectively), compared to patients treated 

with chemotherapy.  

The fourth, and final section (Chapter 9) centres on the questions whether the combined gene expression profiles and 

DNA-methylation profiles can be used to identify previously unrecognized subgroups of AML. 

Chapter 10 provides a general discussion of the results and future perspectives are provided. 
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FIGURE LEGENDS 

 

Figure 1. Overview of large scale measurements. The cell (A) which contains a nucleus (B), which in turn contains the 

chromosomes (C) containing all the genetic information. The following data are frequently measured large scale: 

mRNA expression by using Gene Expression Profiling (GEP) (D), Protein-protein interactions (PPI) (E), DNA-methylation 

levels (DMP or MeDIP-on-chip) (F), or protein-DNA-binding interactions (ChIP-on-chip or ChIP-Seq) (G). DNA helix is 

adapted from National Human Genome Research Institute. 
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Figure 2. Overview of hematopoietic stem cell development. A hematopoietic stem cell matures into myeloid blasts or 

lymphoid blasts. The myeloid blast can subsequently mature into the Erythrocytes, Platelets or various types of white 

blood cells. A lymphoid blast matures into white blood cell such as, B-cells or T-cells63. 
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Figure 3. Overview of CEBPA. (A) Gene CEBPA lies at chromosome 19. There are two isoforms that are translated from 

the same mRNA: P42 and P30. Mutations in CEBPA are seen in the N-terminal and C-terminal regions. (B) The 

frequency of mutated CEBPA (N/C-terminal) for 170 AML patients (data is used from HOVON-SAKK and AMLSG-

cohort44). 
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HAT: Hypergeometric Analysis of Tiling-arrays with Application to 

Promoter-GeneChip Data 

Erdogan Taskesen, Reneé Beekman, Jeroen de Ridder, Bas J. Wouters, Justine K. Peeters, Ivo P. Touw, Marcel J.T. 

Reinders, Ruud Delwel 

ABSTRACT 

Background: Tiling-arrays are applicable to multiple types of biological research questions. Due to its advantages (high 

sensitivity, resolution, unbiased), the technology is often employed in genome wide investigations. A major challenge 

in the analysis of tiling-array data is to define regions-of-interest, i.e., contiguous probes with increased signal intensity 

(as a result of hybridization of labeled DNA) in a region. Currently, no standard criteria are available to define these 

regions-of-interest as there is no single probe intensity cut-off level, different regions-of-interest can contain various 

numbers of probes, and can vary in genomic width. Furthermore, the chromosomal distance between neighboring 

probes can vary across the genome among different arrays.  

Results: We have developed Hypergeometric Analysis of Tiling-arrays (HAT), and first evaluated its performance for 

tiling-array datasets from a Chromatin Immunoprecipitation study on chip (ChIP-on-chip) for the identification of 

genome wide DNA-binding profiles of transcription factor C/EBPα (used for method comparison). Using this assay, we 

can refine the detection of regions-of-interest by illustrating that regions detected by HAT are more highly enriched 

for expected motifs in comparison with an alternative detection method (MAT). Subsequently, data from a retroviral 

insertional mutagenesis screen were used to examine the performance of HAT among different applications of tiling-

array datasets. In both studies, detected regions-of-interest have been validated with (q)PCR.  

Conclusions: We demonstrate that HAT has increased specificity for analysis of tiling-array data in comparison with 

the alternative method, and that it accurately detects regions-of-interest in two different applications of tiling-arrays. 

HAT has several advantages over previous methods: i) as there is no single cut-off level for probe intensity, HAT can 

detect regions-of-interest at various thresholds, ii) it can detect regions-of-interest of any size, iii) it is independent of 

probe-resolution across the genome, and across tiling-array platforms and iv) it employs a single user defined 

parameter: the significance level. Regions-of-interest are detected by computing the Hypergeometric probability, 

while controlling the Family Wise Error. Furthermore, the method does not require experimental replicates, common 

regions-of-interest are indicated, a sequence of interest can be examined for every detected region-of-interest, and 

flanking genes can be reported. 

BACKGROUND 
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Tiling-arrays are used for the identification of specific genomic DNA regions that can be enriched using various 

procedures to study certain molecular biological features. For example, DNA-fragments that are bound by a protein-

of-interest, e.g., a transcription factor, can be enriched by using Chromatin Immunoprecipitation (ChIP). When these 

enriched fragments are hybridized to an array, a genome wide protein binding profile can be obtained that is 

associated with this particular protein-of-interest in the cell type that was studied (ChIP-on-chip64). Other applications 

of tiling-arrays65 are: Methylated DNA immunoprecipitation (MeDIP-on-chip66), transcriptome mapping67, recognition 

of hypersensitive sites such as segments of open chromatin that are cleaved more readily by DNaseI (DNase-chip68), 

or identification of copy number variations or breakpoints (Array CGH69). The use of tiling-arrays to detect enriched 

DNA regions has several advantages such as i) high sensitivity, which allows the detection of small DNA-fragments 

associating with rare molecules and, ii) high probe-resolution, which results in accurate acquisition of unbiased data. 

A tiling-array is an array of short DNA-fragments, which represent 'probes' that cover the entire genome, or contigs 

of the genome. The hybridization of labeled DNA to an array (for example DNA enriched using ChIP), will produce a 

quantitative signal intensity for each probe. Multiple contiguous probes with increased signal intensity across a 

particular genomic region, is a putative region-of-interest, and suggests the presence of a protein binding site. 

As there are no standard criteria to accurately define a region-of-interest, a major challenge in the analysis of tiling-

array data is to define such a region, and discriminate a positive signal from non-specific signals70. Defining regions-

of-interest requires intensity thresholds on continuous probe intensity levels. Following this, the decision of the 

number of consecutive probes above the threshold needs to be made before a region-of-interest is called. This 

threshold, and the number of probes above the threshold, directly influence the size of the region-of-interest that can 

be detected. As biologically relevant regions may vary in intensity, employing a single threshold is insufficient. 

Additionally, as the probe-resolution varies across the genome, and across different tiling-array platforms, choosing a 

fixed number of consecutive probes as a region-of-interest is also inadequate. Various methods have been developed 

to detect regions-of-interest in ChIP-on-chip data such as Welch t-test, HMM, TileMap, MAT, Mixture model approach, 

CMARRT, Starr and Ringo71 72-78. MAT (Model-based analysis of tiling-arrays for ChIP-on-chip)74 is one of the most cited 

methods for analyzing ChIP-on-chip data and it has been shown to outperform Welch t-test, HMM and TileMap71-73. 

MAT uses various user defined parameters to model a region-of-interest, such as maximum bandwidth, maximum 

gap size between probes, the minimum number of probes in a region, and the use of a fixed threshold. A major 

limitation of this method is that it assumes a uniform probe-resolution across the genome, and depends on many user 

defined parameters. 

Here, we propose a statistical framework (HAT: Hypergeometric Analysis of Tiling-arrays) to identify regions of-interest 

in tiling-array data. HAT has several advantages over previous methods including MAT: i) as there is no single cut-off 

level for probe intensity, HAT can detect regions-of-interest for a large number of thresholds, ii) it can detect regions-

of-interest of any size, iii) it is independent of probe-resolution across the genome and across tiling-array platforms 
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and iv) it employs only a single user defined parameter: the significance level. HAT can be seen as a generalization of 

the transcript discovery approach used in Bertone et al 67. 

A detailed description of our framework (Figure 1) can be found in the method section. Briefly, instead of a single 

probe intensity cut-off level, HAT evaluates a large number of thresholds. Each threshold transforms the continuous 

signal intensity levels into discrete calls for each probe; referred to as positive probes where the probe intensity 

exceeds the threshold, and negative probes where it does not. In order to define regions-of-interest, all probes within 

the window of each positive probe are evaluated and the P-value is defined based on the ratio of both positive and 

negative probes using the Hypergeometric distribution. To detect regions-of-interest of any size, the width of the 

window is also varied across all relevant window widths, where a relevant window is defined by the expected fragment 

size in the experimental procedure (e.g., due to sonication). The resulting regions-of-interest for each setting of the 

threshold and each window width are combined by taking the union of the significant window positions. The Family 

Wise Error (FWE) is controlled by employing a Bonferroni correction. 

We have used two datasets using promoter tiling-arrays to evaluate HAT. In the first assay, tiling-array data was 

employed to identify genome wide DNA-binding profiles of the transcription factor C/EBPα, in a cell line model. Using 

these data, we have shown that although HAT detected fewer regions-of-interest than MAT, the detected regions are 

more highly enriched for CEBP binding motifs, and include known C/EBPα target genes. In the second experiment, a 

retroviral insertional mutagenesis assay, HAT identified novel putative transforming loci that may play a role in tumor 

development. Two of these loci were subsequently validated using PCR. 

HAT can also detect and compare regions-of-interest across multiple samples. Each sample is analyzed independently, 

but when multiple samples within one experiment are used, detected regions-of-interest at the same genomic 

location among different samples are combined into 'common regions-of-interest', thereby increasing the confidence. 

In addition, HAT can incorporate sequence information for the detection of pre-defined sequences (e.g., binding 

location within or near the region). These are highlighted in the graphical output for every detected region-of-interest 

and indicated in the output file. 

RESULTS AND DISCUSSION 

Data 

Two distinct experimental datasets were used in this study: ChIP-on-chip data derived from an inducible CEBPA 

expressing myeloid cell line model and data obtained from genomic DNA from retrovirus induced murine leukemias. 

Data were generated using the Affymetrix GeneChip Mouse Promoter 1.0 Array. This chip generates 4.6 million 

perfect match probes over 28000 mouse promoter regions. Promoter regions cover 6 Kb upstream to 2.5 Kb 

downstream of 5' transcription start sites. Each probe has a size of 25nt. 
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Detection of regions-of-interest for C/EBPα chromatin immunoprecipitation by applying HAT 

To compare different methods and to analyze the promoter array data, we made use of a dataset that was obtained 

from a ChIP of beta-estradiol induced C/EBPα in a myeloid cell line, 32D, followed by promoter array hybridizations. 

The data were used to examine the validity of detected regions-of-interest in two ways: i) at the 'CCAAT' binding level; 

C/EBPα interacts with the nucleotide sequence 'CCAAT' within the promoter regions represented on the chip, 

therefore CEBP binding motifs are expected to be enriched, and ii) at the gene level; examination of the presence of 

known C/EBPα target genes, by taking the genes flanking the detected region-of-interest into account. Furthermore, 

one selected region-of-interest was validated by Real Time Quantitative PCR (qPCR). 

The experimental setup was as follows: clones were derived from a myeloid cell line model (32D), that expresses 

either beta-estradiol inducible C/EBPα-ER (3 clones) or control-ER (2 clones). Chromatin immunoprecipitations were 

carried out using an antibody directed against ER in the beta-estradiol treated cells and the DNA obtained from these 

cells, after immunoprecipitation, was hybridized to Affymetrix promoter chips. 

For method comparison we used Model-based analysis of tiling-arrays for ChIP-on-chip (MAT), with the default 

parameters for the detection of regions-of-interest (bandwidth of 300bp; resulting in 2*bandwidth probe positions, 

300bp of maximum gap size between positive probes, minimum of 8 probes for MAT-score, and enriched fragments 

at the 1 × 10-5 significance level). The default settings agree with the average sonicated fragment sizes, being 600bp, 

and the distance between two consecutive probes being approximately 35bp. Using the default criteria in MAT, 4784 

unique regions-of-interest were detected in at least one of the 32D-C/EBPα-ER clones (n = 3) and absent in control 

samples 32D-ER (n = 2). Using HAT, the same significance level and maximum fragment size (1 × 10-5 and 600bp 

respectively) were chosen to detect statistically significant regions-of-interest. Applying these parameters, 1679 

statistically significant regions-of-interest were detected in any of the 32D-C/EBPα-ER clones; 80% (1318) of these 

regions were detected in two or more clones (common regions-of-interest). This corresponds to 856 unique 

chromosomal regions-of-interest. HAT detected approximately one fifth of the regions-of-interest in comparison with 

MAT for the same significance level, and 99.9% (855) of these unique detected regions in HAT overlapped with the 

regions detected by MAT (Figure 2). 

To investigate the validity of these detected regions-of-interest (for both HAT and MAT) on the sequence level, a motif 

enrichment analysis was performed. This was carried out using the Cis-regulatory Element Annotation System 

(CEAS79), where a P-value is computed for each known motif, and the motifs that are significantly enriched in the 

regions-of-interest are reported. The top 10 enriched motifs are indicated in Table 1 for both methods. These data 

showed that HAT detects regions that are highly enriched for the CEBP motif binding sites, whereas MAT does not 

show a clear enrichment for these sites. Note that the detected regions-of-interest by HAT, are a subset of MAT. 

To investigate detected regions-of-interest based on their flanking genes, regions-of-interest were mapped to the 

closest 5' transcriptional-start-site of a gene. Mapping is applied on the forward and reverse DNA strands, with a 
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maximum distance of 300 kb upstream and downstream (NCBI murine genome build 36). This resulted in 2174 unique 

genes for the 856 unique detected regions-of-interest using HAT (10.7% out of the total set of unique genes present 

in mouse). These mouse genes were subsequently overlaid with 169 known homologous human C/EBPα target genes 

(derived from Ingenuity Pathway Analysis, IPA), demonstrating that 40 C/EBPα target genes being detected by HAT (p 

≤ 4 × 10-7) and 86 by MAT (p ≤ 3 × 10-5). Note that MAT has detected approximately five times more regions-of-

interest (4784) resulting in 7238 unique genes (35.8% out of the total set of unique genes present in mouse). Some 

of the detected C/EBPα target genes have previously been described, such as: myc, hp, mpo and il6ra52,80-82. 

Enrichment of the il-6 receptor alpha (il6ra) transcriptional-start-site (Figure 3) was subsequently validated by qPCR. 

An alternative comparison can be performed using the number of regions-of-interest, instead of the significance level. 

For HAT; 856 unique regions-of-interest were detected with a significance level α = 1 × 10-5. To gain approximately 

the same number of regions-of-interest using MAT, we would need to set the α level at 1 × 10-19, resulting in 893 

regions-of-interest. The regions-of-interest detected by HAT showed 84% (718/856) overlap with MAT whereas the 

overlap of detected regions of MAT with HAT was 83% (742/893). Both methods show a high enrichment for the CEBP 

binding motifs. Comparing the detected regions-of-interest with respect to MAT (4827 for α = 1 × 10-5), we need to 

set the α level higher than 0.05 in HAT, but this may compromise the reliability of detected regions-of-interest. For 

this reason, we have set the α level at 0.05 and hereby detected 1910 unique regions-of-interest. These were highly 

enriched for CEBP binding motifs based on the motif enrichment analysis (Table 2), whereas the detected regions-of-

interest by MAT were not highly enriched for CEBP binding motifs (Table 1). The regions-of-interest detected by HAT 

showed 98% (1879/1910) overlap with MAT whereas the overlap of detected regions of MAT with HAT was 39% 

(1874/4784). 

In addition, the HAT and MAT results were also compared with the detected regions of Starr77. Starr implements the 

CMARRT algorithm76 and thereby incorporates the correlation structure for the identification of regions-of-interest in 

tiling-array data. For the detection of regions-of-interest, we have utilized similar parameter settings (fragment size = 

600bp, minimum number of probes in a region = 8 and α = 1 × 105) as used in HAT and MAT. Using these parameter 

settings, Starr detected 1664 regions-of-interest and showed high enrichment for CEBP binding motifs (Additional file 

1: Supplemental Table S1). Following this, we have examined the overlap of regions-of-interest detected by all 

methods as depicted in Figure 2. All regions-of-interest detected by HAT (except one) were also detected by MAT 

alone or together with Starr (64 and 791 respectively). Note that the number of overlapping regions can contain 

multiple regions-of-interest detected by a single method. To assess the validity of the detected regions-of-interest by 

HAT, Starr and MAT, we have examined the enrichment for CEBP binding motifs for the different parts in the Venn 

diagram, depicted as different colors in Figure 2 (blue, red, green, orange and pink). High enrichment for CEBP motifs 

are found for; i) the overlap of HAT with the other two methods (pink: 719), ii) the overlap of HAT with MAT (blue: 64) 

and, iii) the overlap between Starr and MAT (orange: 652). No significant enriched motifs are found in the regions 

detected only by Starr (red: 70) and limited motifs are enriched for CEBP in the regions detected only by MAT (green: 
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3092). Therefore we can conclude that HAT had the highest specificity as it was able to detect regions-of-interest 

highly enriched for CEBP binding motifs. 

Detection of retroviral insertion sites by HAT 

Retroviral Integration Mutagenesis (RIM) in mice is a powerful tool to identify new genes playing an important role in 

oncogenesis. Mice are injected with retroviruses that potentially integrate into the murine genome upon infection. 

Viral integration can lead to gene deregulation, and depending on the genes affected, tumors may develop. Genes 

located proximal to viral integration sites are potentially oncogenic, leading to tumor development. Genomic regions 

that have been targeted by proviral DNA in multiple tumors are called common viral integration sites (VIS), and are 

likely driving tumor development. Using retroviral insertional mutagenesis, many oncogenes have been identified 

using large sequencing screens in multiple tumors83-86. We hypothesize that within tumors, genes may be silenced as 

a result of proviral integration caused by hypermethylation of the CpGs in the viral long terminal repeat, and 

subsequently in the promoters of their target genes. The identification of methylated genes by means of retroviral 

insertional mutagenesis may be studied by Methyl-DNA immunopreciptitation (MeDIP-on-chip), followed by inverse 

PCR, using long terminal repeat (LTR) specific primers. After combining these two technologies, we hybridized samples 

to Affymetrix promoter chips to identify genomic locations involved in viral integration that potentially harbor new 

tumor suppressor genes (TSG). Regions-of-interest within this dataset differ from the C/EBPα-study as they have; i) a 

higher variability in fragment sizes and, ii) contain specific sequences within the identified regions. Therefore these 

data are used to examine the performance and broad applicability of HAT among different applications of tiling-array 

data. Using HAT, we have identified candidate TSGs in mouse tumors by considering regions with a maximum fragment 

size of 1000bp and a significance level α = 0.05. With these parameters, we detected 15 methylated Viral Integration 

Sites (mVIS); of which one appeared to be a common methylated VIS (cmVIS) among two samples (Figure 4). 

Besides the detection of candidate regions based on a statistical framework, we have attached additional mouse 

genomic sequence information (MM8) to the model, in order to determine the sequence of interest based on the 

restriction enzyme used in the inverse PCR. Within this assay, a restriction enzyme (DpnII) will cleave DNA at sequence 

'GATC', within the integrated viral sequence and the flanking genome. Note that because of this property, it is 

expected that every detected region must contain a nearby restriction site, which can easily be verified with HAT. HAT 

showed that all detected mVISs contain a nearby restriction site, conforming specificity of the identified region as 

being a viral insertion site. For PCR validation of the method, two mVISs were selected based on their location to a 

nearby 5' transcriptional-start-site, and confirmed. One of the validated regions is illustrated in Figure 5. 

Extended applications of HAT 

The scope of this method is not limited to the presented studies (i.e., detecting transcription factor binding sites and 

DNA methylated regions). Moreover, we have successfully applied HAT for the detection of regions enriched for 

histone modifications such as, trimethylation of histone 3 at lysine 4 or lysine 27 (H3K4 me3 and H3K27 me3) (data 
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not shown). Some of the detected regions-of-interest were selected for further validation and confirmed by qPCR. 

Regarding tiling-array data spanning the entire genome87 (e.g., RNA transcript mapping data67), we do not expect 

changes in algorithm performance (detection of regions-of-interest) due to an increased variability in hybridization 

consistency because the applied normalization method74,88 corrects for two major causes of differences in 

hybridization consistency, i.e., probe sequence and presence of repeats within the genome. Furthermore, in addition 

to one-color arrays (e.g., Affymetrix tiling-arrays) we envision that HAT can also be applied on data stemming from 

two-color arrays (e.g., Nimblegen tiling-arrays), because data structure remains similar. We stress however that the 

normalization procedure is an important step and strongly depends on the type of tiling-array dataset. 

CONCLUSIONS 

Here we propose a statistical framework; HAT (Hypergeometric Analysis of Tiling-arrays) to analyze tiling-array data. 

We showed that the method is robust and has increased specificity in the detection of regions-of-interest in 

comparison with two alternative methods. This is achieved by computing the Hypergeometric probability for every 

detected region-of-interest, among different threshold levels of probe intensities and window sizes, while keeping 

control of the Family Wise Error (FWE) by employing Bonferroni correction. Besides the detection of regions-of-

interest, HAT also determines sequences-of-interest, flanking genes and the distances to 5' transcriptional-start-sites 

on both DNA strands. We describe the performance of HAT, when applied to different experimental tiling-array 

datasets. For each experimental dataset, the selected downstream genes flanking the detected regions-of-interest 

were successfully confirmed by (q)PCR. We compared the detected regions-of-interest of HAT with two other 

methods (MAT74 and Starr77), and showed that HAT resulted in a reduced number of detected regions-of-interest 

using the same significance for both MAT and Starr. However, using motif enrichment analysis we showed that the 

regions-of-interest detected by HAT were more enriched for the expected binding motifs of CEBP compared to MAT 

and showed similar enrichment for Starr, illustrating increased specificity using HAT. 

Besides analyzing ChIP-on-chip data, HAT is also suitable for the analysis of other types of tiling-array data. Applying 

HAT to the data from the MeDIP inverse PCR and promoter-GeneChip hybridization experiment, we discovered mVISs 

and cmVIS that are subject to DNA-methylation and identified the genes (unpublished data) that flank these 

methylated viral integration sites (Figure 4 and 5). 

HAT is applicable to detect regions-of-interest among the different applications of tiling-arrays, and has the advantage 

of being independent for thresholds, number of probes in a region and probe-resolution. It does not depend on setting 

various user defined parameters, except for the significance level and an optional maximum fragment size. 

METHODS 
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Extracting candidate gene-regions based on high throughput data using tiling-arrays is a multi-step process (Figure 1). 

The first step is to normalize the probe intensity data from the chip (Figure 1A). For this purpose, we utilize the 

normalization from Model-based analysis of tiling-arrays for ChIP-on-chip (MAT)74,88, but other normalization 

procedures can also be applied. The normalization procedure prevents systematic variation between experimental 

conditions, which are unrelated to biological differences. As a result of this normalization, the probe intensity values 

follow a normal distribution with a negative mean; hence the majority of probes have values below zero, and are 

ignored in all subsequent analyses. Probe intensities that may be the result of hybridization of labeled DNA on the 

chip (e.g., were present in the immunoprecipitated chromatin sample), have values greater than zero and are used to 

determine candidate regions-of-interest. 

After normalization, probe intensities are discretized using a varying threshold and the significance of the probes 

within a varying window is determined. Significant window positions are then merged into the final regions-of-

interest. We illustrate this approach in the simplified schematic representation shown in Figure 6. In Figure 6A, eight 

probes are shown at an arbitrary genomic location. Their intensities are represented by vertical lollipops. The positive 

probes (six in this example) are assumed to be part of a possible candidate region. Probes with higher intensity levels 

are more likely to be the results of hybridization on chip, but the exact level of intensity for which this is the case is 

unknown. Therefore, multiple probe intensity levels are taken into account by varying the discretization threshold t. 

The number of probes that exceed this threshold (called positive probes) is denoted by k(t). Figure 6B and 6E, 

illustrates the thresholds k(t)=2 and k(t)=4, respectively. All probes exceeding t are set to one, and those not exceeding 

the threshold t are set to zero. 

To define a region-of-interest, we determine the significance of all possible window positions g, for which the window 

contains at least one positive probe. To account for the fact that the exact number of probes in a region-of-interest is 

undefined, and may differ greatly between different regions-of-interest due to differences in local probe-resolution; 

the window width n is varied. To prevent evaluating many highly similar windows, thereby incurring a high multiple 

testing penalty, only those window widths for which the number of probes in the window varies are evaluated. 

Therefore, n is defined in terms of the number of probes contained in the window. The number of positive probes in 

a window of width n, at genomic position g, for threshold value t, is denoted by x(g, t, n). In the example presented in 

Figure 6, we varied n from 1 through to 3. For the case k(t) = 2 (Panel B and C), x(g, t, n) ranges from 1 through to 2, 

and in case k(t)=4 (Panel E and F), x(g, t, n) ranges from 1 through to 4. For each window, a P-value is determined; 

defined as the probability of observing at least x positive probes in the window. For any window position g, threshold 

level t and window width n, P(g, t, n) is computed as: 

 

𝑃(𝑔, 𝑡, 𝑛) = 𝑃(𝑋 ≥ 𝑥|𝑔, 𝑡, 𝑛, 𝑋 ≥ 1) =
𝑃(𝑋 ≥ 𝑥|𝑔, 𝑡, 𝑛)

𝑃(𝑋 ≥ 1|𝑔, 𝑡, 𝑛)
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(1) 

Note; that since we restrict each window to contain at least one positive probe to prevent evaluating useless window 

positions, this probability is conditioned on X ≥ 1. All probabilities are computed using the Hypergeometric 

distribution: 

 

𝑃(𝑋 ≥ 𝑥|𝑔, 𝑡, 𝑛) = 1 − ∑
(

𝐾
𝑥

) (
𝑁 − 𝐾
𝑛 − 𝑥

)

(
𝑁
𝑛

)

𝑥−1

0

 

(2) 

Where N is a fixed parameter and represents the total number of probes present on the (e.g., promoter) chip. To 

correct for the number of tests performed, we apply Bonferroni correction, controlling the Family Wise Error per value 

of the threshold level as follows: 

 

𝑃∗(𝑔, 𝑡, 𝑛) = 𝑃(𝑔, 𝑡, 𝑛) ∙ 𝑘(𝑡) ∙ 𝑛 

(3) 

Based on this P-value, it is possible to exclude regions that do not reach a predefined significance level (α): 

 

𝑆(𝑔, 𝑡, 𝑛) = {
1
0

       
if    
else

     
𝑃 ∗ (𝑔, 𝑡, 𝑛) ≤ 𝛼

 

(4) 

Due to the use of various values for t and n, similar or partly overlapping regions are found. In order to find a single 

region-of-interest at the same genomic location, these overlapping regions are merged by joining regions with one or 

more overlapping probes. In our example, we assume for simplicity, that windows with x (g, t, n) ≥ 2 are statistically 

significant. These statistically significant regions are colored blue and green in Figure 6C and Figure 6F respectively. 

The merging procedure is illustrated in Figure 6D, where four blue regions are merged into a single region, and in 

Figure 6G where 18 green regions are merged. 

Finally, regions found for different threshold levels t are also merged (Figure 6H) into the final region-of-interest 

(Figure 6I). Regions-of-interest tend to be larger than the regions detected at a single setting of the threshold level, 

or single window width due to the merging of all these individual regions. To determine the most important parts of 

the region-of-interest, we introduce a probe-significance score Q(g), which reports how often probes were part of the 

statistically significant region. This score is illustrated by the red curve in Figure 6I, and computed as follows: 

 

𝑄(𝑔) = ∑ ∑ 𝑆(𝑔, 𝑡, 𝑛) ∙ 𝐼(𝑥(𝑔, 𝑡, 𝑛), 𝑡)
∀𝑁∀𝑡
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where  

𝐼(𝑥(𝑔, 𝑡, 𝑛)) = {
1
0

       
if    
else

     
𝑥(𝑔) ≥ 𝑡

   

(5) 

In our example so far, regions are detected within a single sample. When multiple samples are available (for the same 

experiment), array-wise detection of regions-of-interest is examined in order to detect common regions-of-interest 

(Figure 1D). A radius, defined in base pairs, can be defined to set the maximum distance between regions over multiple 

samples (default is zero). 

ADDITIONAL PROPERTIES OF HAT 

The HAT method includes two additional properties beside the detection of regions-of-interest; i) the determination 

of sequences-of-interest surrounding and within the detected regions-of-interest, e.g., the enhancer binding protein 

C/EBPα is known to interact with 'CCAAT' sequences, and it is therefore expected that detected regions-of-interest 

contain this sequence in a chromatin IP experiment. The presence, and positions of the sequences-of-interest can be 

indicated in the (graphical) output of HAT. In this graphical output, sequences are indicated with an upward facing 

green bar, indicating that the sequence is detected on the positive strand, or a downward facing green bar 

representing a sequence on the negative strand. ii) The determination of genes flanking the detected regions-of-

interest. For every detected region-of-interest (for both upstream and downstream and forward and reverse DNA 

strands), the genes with the closest distance to the transcriptional-start-site are determined, and indicated in the 

(graphical) output.  

To include these regions-of-interest and genes into the HAT method, the public genome-sequence (available for 

different model systems) can be utilized from the UCSC genome browser. 

AVAILABILITY AND REQUIREMENTS 

HAT is implemented in Matlab R2009b and is tested on UNIX and MS-Windows. It is available on 

http://www.erasmusmc.nl/hematologie/. The run time depends on the number of used threshold cut-offs as the 

computation complexity increases linear with the used number of probes for the detection of regions-of-interest. In 

addition, run time also depends on the different steps in the method (Figure 1B-F). On average, for the C/EBPα-study, 

28 minutes were needed per sample for the detection of regions-of-interest, while MAT required on average a run 

time of 23 minutes per sample. Note, however, that in our algorithm the data were analyzed using a multitude of 

window sizes and thresholds. A more detailed overview of the run time for each step in the method can be found in 

Additional file 2: Supplemental Figure S1. 
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FIGURE LEGENDS 

 

Figure 1. Illustration of the method. The different steps of the method, illustrated as blocks (A, B, C, D and E), are 

needed to process raw probe intensity data, detection of unique candidate regions and mapping of the detected 

regions-of-interest to the 5' transcriptional-start-site of nearby located genes. HAT is indicated with the blocks B, C, D 

and E. These are representative for the detection of unique candidate regions-of-interest in single, as well as multiple 

samples. 
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Figure 2. Venn diagram depiction the overlapping regions-of-interest between HAT, Starr and MAT. Detected regions-

of-interest by HAT (blue: 856), Starr (red: 1664) and MAT (green: 4784) are indicated with the number of overlapping 

regions between the methods. The overlap of regions detected by all three methods (pink: 719) showed high 

enrichment for CEBP binding motifs. Overlapping regions between HAT and MAT (64: blue) and Starr and MAT 

(orange: 652) also showed high enrichment for CEBP binding motifs. Uniquely detected regions by Starr (red: 70) 

showed no significantly enriched motifs, and MAT (green: 3092) showed limited motifs enriched for CEBP. Note that 

the number of overlapping regions can contain multiple regions-of-interest detected by a single method. 
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Figure 3. Graphical output of a detected region-of-interest from the C/EBPα-study. It was confirmed with qPCR that the 

C/EBPα protein targets and regulates the proximal promoter region of the il-6 receptor alpha gene, which lies 

downstream of the region-of-interest (negative DNA strand). The top panel (A), indicates the probes, represented as 

vertical blue lollipops, the left y-axis the probe intensities, and the right y-axis illustrates the contribution of each 

probe separately to the region (probe-significance). The x-axis indicates the genomic probe positions, and illustrates 

with a downwards facing green bar; the sequence of interest. The sequence, 'CCAAT', was found on the negative DNA 

strand. Furthermore, flanking genes to this detected region are indicated with distances in base pairs to the 5' 

transcriptional-start-site. In the bottom panel (B), the detected regions-of-interest for various windows and probes 

are shown. The colors represent the detection of regions-of-interest, for a number of different top probes and window 

sizes. The merged region-of-interest has a fragment width of 853bp, and lies in the proximal promoter region of il6ra 

on the negative DNA strand. 
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Figure 4. Graphical output of a detected cmVIS in the MeDIP-study. A region-of-interest detected in two samples, is 

illustrated in Panels A and B. Panel A shows 840 subregions that are merged with a total length of 1567bp. The 

restriction sites, indicated as green bars, are located in and around the detected region, and are present on both DNA 

strands due to the palindrome sequence: 'GATC'. The region-of-interest detected in the second tumor (Panel B), exists 

of 28 subregions, with a fragment width of 949bp. 
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Figure 5. Graphical output of a detected and validated mVIS in the MeDIP-study. Panel A illustrates the detected mVIS 

which are subject to DNA-methylation. Only a section of the detected region-of-interest has an increased probe 

intensity; the probe-significance signifying this subregion. Directly beside the increased probe-significance, a 

restriction cleavage site is indicated by means of a green bar. Due to the palindrome sequence, these sites are 

indicated at the same genomic position on both DNA strands. Panel B shows the detected statistically significant 

regions among the different thresholds, and window sizes with various colors. A schematic representation of the 

amplified genomic region, with the virus- and the murine contribution, is shown in Panel C. 
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Figure 6. Schematic depiction for the detection of regions-of-interest. Schematic depiction for the detection of regions-

of-interest, based on probe intensities. Eight probes, with their genomic location, are shown in Panel A. Four of these 

have positive probe intensities. The use of multiple thresholds, transforms continuous data into discrete data; as 

shown in Panel B and E. Various window scales N, are used to examine neighboring probes for their probe intensities 

in Panel C and F. These windows will contain different number of positive probes. The Hypergeometric probability is 

computed for every region-of-interest, and excludes a region-of-interest when the region is not statistically significant 

after correcting for a single positive probe in a region-of-interest and multiple testing. The remaining regions are 

merged for each k(t) (illustrated in Panel D, G, H) and then among all k(t) to a single region-of-interest (Panel I). To 

determine how often probes were detected in statistically significant regions, the probe-significance is computed 

(Panel D and E), and indicated with a red colored line that signifies the statistically significant probes in the detected 

region-of-interest. 
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Table 1. Motif enrichment analysis. The top 10 motifs enriched in the detected regions-of-interest (α = 1 × 10-5) by HAT 

and MAT for the C/EBPα-study (ChIP-on-chip). Among the top 10 motifs enriched in the regions-of-interest detected 

with HAT, seven contained the CEBP binding motif whereas for MAT, only one contained the CEBP binding motif. For 

each reported motif, the number of hits within the regions-of-interest are counted, their fold change computed, and 

the P-value derived using the binomial test. 

 

Table 2. HAT: Motif enrichment analysis using α = 0.05. The top 10 motifs enriched in the 1910 detected regions-of-

interest using HAT (α = 0.05) in the C/EBPα-study. There is a high enrichment for binding motif CEBP. For each reported 

motif, the number of hits within the regions-of-interest are counted, their fold change computed, and the P-value 

derived using the binomial test. 

  

Nr Motif Hits Fold-change p -value Motif Hits Fold-change p -value

1 AP2alpha 9735 1.606 0 M00117.CEBPbeta 1532 2.325 2.84E-185

2 Elk-1 5380 1.707 9.23E-286 M00770.CEBP 3076 1.766 2.23E-183

3 M00470.AP-2 gamma 5938 1.641 1.82E-274 M00912.C-EBP 3036 1.715 1.31E-164

4 M00109.CEBPbeta 6170 1.617 3.52E-269 cEBP 1928 1.965 1.89E-157

5 M00695.ETF 3449 1.885 3.05E-250 M00116.CEBPalpha 2689 1.722 4.30E-148

6 M00025.Elk-1 2979 1.949 1.76E-237 M00109.CEBPbeta 1278 2.161 2.35E-132

7 M00446.Spz1 4863 1.665 3.90E-237 M00190.CEBP 2402 1.719 9.67E-132

8 M00008.Sp1 5135 1.625 1.04E-228 M00098.Pax-2 1799 1.578 8.57E-73

9 E74A 3635 1.691 7.08E-188 M00496.STAT1 1909 1.545 8.88E-71

10 M00771.ETS 3756 1.674 2.37E-187 M00971.Ets 1917 1.508 4.42E-64

MAT HAT

Nr Motif Hits Fold-change p -value

1 M00117.CEBPbeta 3236 2.082 6.19E-304

2 M00770.CEBP 6688 1.628 8.95E-299

3 M00912.C-EBP 6609 1.583 6.70E-265

4 M00116.CEBPalpha 5858 1.591 1.12E-239

5 cEBP 4068 1.758 1.88E-238

6 M00190.CEBP 5245 1.592 2.81E-215

7 M00716.ZF5 3927 1.706 2.12E-208

8 M00109.CEBPbeta 2645 1.896 3.06E-195

9 M00098.Pax-2 4355 1.619 1.76E-191

10 M00428.E2F-1 4374 1.572 4.67E-171
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SUPPORTING MATERIAL 

 

Figure S1. HAT Computation performance. Run time of the various steps in the method. The C/EBPα-study is used to 

analyze the run time for the different steps in the method; Step B: loading data and detection of regions-of-interest, 

Step C: Merging of regions-of-interest and computation of the probe-significance, Step D: detection of common 

regions-of-interest and Step E: gene mapping. Per sample, 62 minutes were needed on average to process all the 

steps in the method. 

 

Table S1. Starr: Motif enrichment analysis. The top 10 motifs enriched in the 1664 detected regions-of-interest using 

Starr (fragment size = 600bp, minimum number of probes in a region=8, α=1×10-5) in the C/EBPα-study. There is a 

high enrichment for binding motif CEBP. For each reported motif, the number of hits within the regions-of-interest 

are counted, their fold change computed, and the P-value derived using the binomial test. 

Nr Motif Hits Fold-change p -value

1 M00117.CEBPbeta 1992 2.153 2.74E-203

2 M00912.C-EBP 4084 1.643 9.46E-190

3 cEBP 2570 1.866 2.94E-181

4 M00770.CEBP 3980 1.627 1.90E-178

5 M00116.CEBPalpha 3523 1.607 7.15E-151

6 M00109.CEBPbeta 1670 2.011 5.45E-145

7 M00190.CEBP 3138 1.599 3.13E-132

8 HLF 666 2.023 3.80E-60

9 M00260.HLF 608 2.017 9.94E-55

10 M00771.ETS 845 1.731 6.80E-49
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HATSEQ: Detection and Interpretation of Peaks in Tiling-array and 

Sequence Data 

Erdogan Taskesen, Remco Hoogeboezem, Ruud Delwel and Marcel J.T. Reinders 

ABSTRACT 

Probing protein-DNA is gaining popularity as it sheds light on molecular mechanisms that regulate the expression of 

genes. Currently, tiling-arrays and next-generation sequencing technology can be used to measure these interactions. 

Both methods generate a signal over the genome in which contiguous regions of peaks on the genome represent the 

presence of an interacting molecule. Many methods do exist to identify functional regions-of-interest (ROIs) on the 

genome. However the detection of ROIs are often not an end-point in research questions and it therefore requires 

data dragging between tools to relate the ROIs to information present in databases, such as gene-ontology, pathway 

information, or enrichment of certain genomic content.  

We introduce HATSEQ (Hypergeometric Analysis of Tiling-array and Sequence data), a powerful tool that accurately 

identifies functional ROIs on the genome where a genomic signal significantly deviates from the general genome wide 

behavior. HATSEQ also includes a number of built-in post-analyses with which biological meaning can be attached to 

the detected ROIs in terms of gene pathways and dé-novo motif analysis, and provides different visualizations and 

statistical summaries for the detected ROIs. On top of that, HATSEQ has an intuitive graphic user interface that lowers 

the barrier for researchers to analyze their data without the need of scripting languages. We compared the results of 

HATSEQ against two other popular ChIP-Seq methods and observed overlap in the detected ROIs but HATSEQ is more 

specific in delineating the peak boundaries. We also discuss the versatility of HATSEQ by using a STAT1 ChIP-Seq data 

set, and show that the detected ROIs are highly specific for the expected STAT1 binding motif. HATSEQ is freely 

available at: http://hema13.erasmusmc.nl/index.php/HATSEQ. 

BACKGROUND 

Protein-DNA-interactions, such as transcription factor-DNA-binding, DNA-methylation or methylation/acetylation of 

histone tails, can nowadays be identified with high sensitivity and specificity, using next-generation sequencing (NGS) 

technology. NGS rapidly replaces tiling-arrays technology because of the increased resolution with which the 

interactions can be measured. Both technologies generate a signal along the genome that for instance represents the 

interaction of regions with transcription factors. Typically one is interested in finding those regions in the genome 

where a signal significantly deviates from the overall genome wide background signals. Previously, for tiling-array 

data, we developed a method called “Hypergeometric Analysis of tiling-arrays” (HAT), to detect regions-of-interest 

(ROIs). In short, HAT sets a threshold to decide whether the signal of a probe is excessive, and then uses a sliding 
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window approach to analyze whether a significant number of marked probes are found within that window. The signal 

is analyzed at different scales by considering a range of different thresholds and window sizes, and the detected 

regions at individual scales are integrated. The detected ROIs are over all scales under control of a Familywise error 

(FWE), specified by a significance level α. HAT has been successfully applied on a range of different DNA-interaction 

sources, such as ChIP-on-chip89, MeDIP-on-chip56, H3K4me3, H3K27me389 and 3′-TILLING-135-K-Oryza-sativa-

microarray.57 Here, we introduce HATSEQ, which is an improved version of HAT that can work on nucleotide 

resolution. As with HAT, HATSEQ is nonparametric, and independent of the coverage and resolution across the 

genome. Various methods with varying algorithmic complexity have been developed to detect ROIs in ChIP-Seq data 

such as, MACS90, FindPeaks91, CisGenome92, QuEST93, PeakSeq.94 MACS (Model-based Analysis for ChIP-Seq) is one of 

the most cited methods for analyzing ChIP-Seq data. Although the variety of ChIP-Seq methods, the majority can only 

be run from the command line and require variable degrees of data formatting and expertise to implement.95 

CisGenome however does provides a graphical user interface (GUI) but is restricted to the windows platform. With 

HATSEQ, we aim at the researcher that can experience difficulties with the use of the command line and in the 

downstream analysis. After finding the ROIs with HATSEQ, one is generally interested in a functional analysis of the 

regions. Typically this is done by relating the regions to information present in databases, such as gene-ontology, 

pathway information, or enrichment of certain genomic content. HATSEQ supports, through a GUI, a number of such 

functional analyses of the ROIs: e.g., gene mapping, motif analysis and pathway analysis. It also outputs for the 

detected ROIs, fasta files, UCSC genome browser tracks to enable visualization of the ROIs together with any other 

genomic data, and a single circular graph (Circos96) that illustrates all the detected genes and their chromosomal 

locations.  

IMPLEMENTATION 

HASTSEQ: a statistical framework to detect regions-of-interest in genomic signals 

HATSEQ detects ROIs in NGS data using the statistical framework as described in HAT89, but with read depth at 

genomic positions as an input. It is supposed that genomic positions with read depth greater than zero may be the 

result of sequenced DNA pieces that were, e.g., present in the immunoprecipitated chromatin sample, indicating the 

presence of protein-DNA-binding at that particular position. To decide whether the read depth at a genomic location 

is excessive, HATSEQ varies the threshold at which it considers the read depth to be indicative for a genomic event. A 

sliding window approach is then used to analyze whether a significant number of excessive sequence-reads are found 

within the window for every threshold setting and for varying widths of the window (as the size of the event is not 

known a priori). For each window, a P-value is determined, defined as the probability of observing at least the number 

of observed reads, x, in the window (given a random distribution of reads over the genome). For any window position 

g, threshold level t and window width n, P(g, t, n) is computed as: 
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𝑃(𝑔, 𝑡, 𝑛) = 𝑃(𝑋 ≥ 𝑥|𝑔, 𝑡, 𝑛, 𝑋 ≥ 𝑐) =
𝑃(𝑋 ≥ 𝑥|𝑔, 𝑡, 𝑛)

𝑃(𝑋 ≥ 𝑐|𝑔, 𝑡, 𝑛)
 

(1) 

Where P(X ≥ x | g, t, n) is based on the Hypergeometric distribution of drawing, on genomic position g, at least x 

reads that exceed the threshold t in a window of size n, and where N is a fixed parameter that represents the total 

number of reads that are sequenced, and K the number of reads that exceed the threshold. For each window the P-

value is restricted such that each window should contain at least c reads to prevent evaluating window positions that 

are not of interest. 

We apply Bonferroni to correct for the number of tests performed at each threshold level, which is defined by the 

number of reads (K) that exceed the threshold (t) and window size n. The corrected P-values are subsequently defined 

by: P*(g, t, n). Due to the use of various threshold values (t) and window sizes (n), similar or partly overlapping regions 

are found. In order to find a single region-of-interest at the same genomic location, these overlapping regions are 

integrated by joining regions with one or more overlapping reads. To determine the most important part of the region-

of-interest, we introduce a read depth significance score Q(g), which reports how often reads were part of a region 

for a predefined significance level (α). This score is computed as follows: 

𝑄(𝑔) = ∑ ∑ 𝑆(𝑔, 𝑡, 𝑛) ∙ 𝐼(𝑥(𝑔, 𝑡, 𝑛), 𝑡)
∀𝑁∀𝑡

  

where 

𝑆(𝑔, 𝑡, 𝑛) = {
1
0

       
if    
else

     
𝑃∗(𝑔, 𝑡, 𝑛) ≤ 𝛼

    and   𝐼(𝑥(𝑔, 𝑡, 𝑛)) = {
1
0

       
if    
else

     
𝑥(𝑔) ≥ 𝑡

 

(2) 

Thus, the final candidate regions-of-interest are determined by integrating the significant window positions over all 

thresholds. HATSEQ is optimized for NGS data analysis by: (1) incorporating a minimum allowed read depth to prevent 

the detection of systematic variation; (2) incorporating a minimum allowed region length to prevent the detection of 

regions that are the result of highly correlated reads; (3) normalization of the read depth per sample such that sum 

of the read depth is 1, which makes the depth of the sequenced reads comparable between experiments; (4) 

normalization of the read depth by using a set of reference samples ; and (5) the use of multi-threaded computations 

(each chromosome is separately analyzed and HATSEQ exploits the use of memory mapped files that allows the 

analysis of any read depth). 

HATSEQ can be applied in three types of study-designs, namely; (1) one sample analysis where only one sample is 

available and sequenced; (2) multi-sample analysis, where the sequenced reads of the experimental samples can be 

analyzed compared to the reads of one or more negative control samples; and (3) combined ChIP-Seq and ChIP-on-

chip analysis where an overlap of candidate ROI between the experimental replicates can be marked. 
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Functionalities of HATSEQ 

Data processing and region identification. HATSEQ detects ROIs from mapped sequenced reads or normalized probe 

intensities. For the analysis of NGS data, it processes Bam or Pileup files to detect ROIs using the read depth at base 

pair position. For ChIP-on-chip data it uses preprocessed files, e.g., by MAT.74 As an example, both NGS data and ChIP-

on-chip files can be loaded using the GUI and simultaneously analyzed with or without controls.  

Pathway analysis. HATSEQ integrates two pathway enrichment analyses based on the genes that are selected by; (1) 

having a selected ROI as closest ROI; or (2) having a detected ROI in their promoter region (the 2000bp region 

upstream of the transcriptional-start-site (TSS)). Pathway annotations (gene sets) are extracted from the Molecular 

Signature Database97 (MSigDB). The enrichment of each pathway for the selected set of genes is computed using the 

Hypergeometric distribution and is corrected for multiple testing using FDR98 or FWER.99 

Motif analysis. HATSEQ gives the opportunity to find enriched motifs in sequences derived from: (1) the detected ROIs; 

and (2) the promoter regions (2000nt upstream from TSS) of the genes that have a selected ROI as closest ROI. It uses 

the generalized extreme value probability method100, which detects significantly over-represented ungapped words 

of fixed length. It consequently outputs the over-represented sequences that are corrected for multiple testing using 

FDR98 or FWER.99 Finally, for each detected motif, the position weigh matrices (PWMs) are correlated with annotated 

PWMs from TRANSFAC and JASPAR and subsequently listed if the correlation is larger than 0.6. 

Support for different species. HATSEQ supports gene-annotation (for e.g., ROI gene-associations) and chromosome 

files for the species that are available on UCSC (http://hgdownload.cse.ucsc.edu). Species that are available on UCSC 

can be chosen using the GUI, which are then automatically downloaded, or alternatively, species can be uploaded 

selectively. 

Statistical summaries and visualization of results. HATSEQ reports the detected ROIs, including the neighbouring genes 

and summary statistics, in tables. For example, one can extract the percentage of ROIs that are in close vicinity to the 

TSS of a gene, or the percentage of ROIs that contain a user defined motif. The genes for the detected ROIs can be 

visualized by the circular graph, Circos or as custom tracks in UCSC. 

Equipment-Software. HATSEQ is a stand-alone application that is implemented in C++ and Matlab Mathworks. To run 

HATSEQ, an installation of Matlab or the freely available Matlab Compiler Runtime (MCR) is mandatory.  

Equipment-Hardware. HATSEQ runs on any x86-64 system with MS-Windows, UNIX, Linux or Mac OS whereas a 

minimum of 4GB RAM is required. The analyzed ChIP-Seq examples in this manuscript wererun on MS-Windows 7 

with a 1.87-GHz CPU and 4GB RAM. The runtime, with default parameter settings, was approximately 10 minutes to 

detect ROIs in 1 Million reads (1.87GHz), an estimate that increases with sequence coverage. 

RESULTS AND DISCUSSION 
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Method comparison 

To evaluate the performance of HATSEQ, we used two publically available ChIP-Seq data sets (DNA-binding to CCAAT 

enhancer binding protein alpha (C/EBPα) and trimethylation of H3 lysine 4 (H3K4me) experiment) and compared the 

results against to two other state-of-the-art methods, i.e., MACS (v1.42)90 and FindPeaks (v4).91 MACS uses a dynamic 

Poisson distribution to detect peaks and empirically estimates the false discovery rate (FDR) for each detected peak, 

whereas FindPeaks assumes a triangle based distribution in which fragments have a minimum, maximum and a user 

defined median size. 

The first ChIP-Seq data set contains massively parallel sequenced DNA-fragments bound by the transcription factor 

C/EBPα (cell line U937, GEO accession: GSM722423) and is used to evaluate the results for one sample analysis. The 

sequencing data of this C/EBPα experiment is aligned using BWA101 (hg19). To avoid the detection of peaks that are 

the result of technical variation, we discarded genomic positions with a read depth smaller than 10. With MACS we 

detected 50,525 ROIs, using default parameters (bandwidth of 300bp at the 1x10-5 significance level). FindPeaks 

detected 75,839 ROIs using the default parameters (Triangle distance low=100bp, median=200bp, high=300bp with 

minimal allowed coverage 0.001). With HATSEQ we detected 32,735 ROIs using a bandwidth (fragment size) of 300bp, 

but with FWER significance level 0.05. Eighty-seven percent of the 32,735 HATSEQ ROIs (28,413 ROIs) were also 

detected by either of the two other methods, and 85% (27,862 ROIs) of the HATSEQ ROIs are common among all 

methods (Figure 1A).  

Although there was a high overlap of detected ROIs between the three methods, HATSEQ better delineates the peak 

boundaries in the data. This can be concluded from: (1) regions detected by HATSEQ showed on average higher read 

depth (HATSEQ: 30.1, MACS: 13.1 and FindPeaks: 5, Figure 2C); (2) regions detected by HATSEQ are consistently 

smaller in length compared to the other methods (average region length HATSEQ: 153bp, MACS: 350bp and 

FindPeaks: 1,679bp, Figure 2A); and (3) the read depth differences at the boundary of a region are more extreme for 

HATSEQ regions (Figure 2B). We illustrate in Figure 1B the superior behavior of HATSEQ for ChIP-seq data for a region 

on chromosome 1 of the C/EBPα experiment. It can clearly be seen that HATSEQ most accurately detects the three 

regions-of-interest, among a region close to the TSS of IL6R which is a known target of C/EBPα.82 Remarkably, 

FindPeaks detects one large region-of-interest, and MACS overshoots the boundaries of the three regions. Among the 

4,322 ROIs that were solely detected by HATSEQ, we detected ROIs that were in close proximity of known target 

C/EBPα genes, such as CD761 and ACSL102. 

The second analysis involved sequence data from a H3K4me ChIP-Seq experiment (cell line K562, data available from 

University of Washington[10]) in which functional loci based on the chromatin signatures can be identified, i.e., 

H3K4me peaks at the promoter of active genes.103 These histone marks are known to generate a bimodal distribution 

of the signal (read depth) which is caused by the spacing between the histones that interact with the DNA.104 We 

evaluated the results of HATSEQ, MACS and FindPeaks for the identification of H3K4me peaks by normalizing it against 

a control replicate. Sequence alignment was performed using BWA101 (hg19) with default parameter settings. HATSEQ 
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detected 14,616 statistically significant regions-of-interest, MACS: 10,694 and FindPeaks: 9,471 (Figure 1C) by 

comparing the input versus the negative control.  

The regions detected by HATSEQ that overlap with either of the two other methods (9,286 ROIs, 63.5%) again showed 

that HATSEQ better delineates the peaks, although less pronounced as in the previous experiment: (1) the HATSEQ 

regions have higher read depths (average read depth: HATSEQ: 16.1, MACS: 15.5 and FindPeaks: 10.5, Figure 3C), (2) 

HATSEQ regions are smaller in length (average region length: HATSEQ: 1,096bp, MACS: 1,751bp and FindPeaks: 

4,297bp, Figure 3A), and (3) the difference of read depth at the border of the region are much more pronounced for 

HATSEQ regions (Figure 3B). Figure 1D illustrates a region on chromosome 22 in close proximity of SDF2L1. Clearly 

HATSEQ delineates the boundaries of the peak region best. To assess the validity of the detected regions by HATSEQ 

we tested the 14,616 ROIs for bimodality using the statistical dip test of unimodality.105 A significant bimodal 

distribution (FDR≤0.05) was detected in 12,897 ROIs (88.2%). This illustrates that the large majority of detected ROIs 

contains the expected bimodal distribution. 

Taken together, HATSEQ showed better performance in delineating peak boundaries for the detected ROIs when 

compared to other ChIP-Seq methodologies, such as MACS and FindPeaks. For each method we used the default 

settings, although transcription factor binding and histone modifications can differ substantially in their properties 

(e.g., length or the region) yet specifying the optimal parameters in an unbiased way is difficult. We also tested 

whether HATSEQ can also detect ROIs in genomic areas with low read depth by re-analyzing the C/EBPα ChIP-seq data 

set without removing any genomic positions with read depth smaller then 10. We detected 42,046 significant regions 

(instead of 32,735 ROIs) which clearly illustrates the capability of HATSEQ to detect ROIs in low read depth genomic 

areas. Note that applications of HATSEQ are not limited to the presented NGS ChIP data but can be applied to other 

types of data, such as MeDIP-seq106
, DNase-seq107

 and MBD-seq.108 

A case study with HATSEQ 

To illustrate the functionalities of HATSEQ, we used a publicly available ChIP-Seq data set (GEO accession: GSE15353) 

where the DNA-fragments bound by the transcription factor STAT1109 were massively parallel sequenced. For 

transcription factor STAT1 it has been described that it binds to STAT-motifs110, and a well-known target gene is the 

STAT3111 gene. We compared data obtained from six interferon-γ (IFN-γ) stimulated HeLa S3 cells and compared those 

to seven unstimulated human HeLa S3 cells. After the alignment using BWA101, we detected in total 2,502 ROIs with 

HATSEQ (sizes between 11bp-669bp, median: 81bp) using default parameter settings (α≤0.05 and read depth≥10). 

These ROIs showed significant binding in the stimulated cells but not in the unstimulated cells, which were 

subsequently investigated using HATSEQ’s motif analysis. Thus, from the design of the experiment, it is expected that 

the detected ROIs should contain STAT-binding sites. The detected motifs, among the sequences of the 2,502 ROIs 

correspond to the STAT1 motif according to our results (P-value<9.1x10-6), and also according to MEME112 and 

TOMTOM.113 The 2,502 detected ROIs are annotated with 914 unique genes. These 914 genes included the STAT3 
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gene, which was associated with one of the most significantly detected ROI. This ROI was also strongly enriched for 

the STAT1 motif sequence (P-value<2.13x10-177, Figure 4A and B). However, not all detected ROIs contained the 

STAT-binding site. Therefore we searched for ROIs that were detected across two or more replicates. We found 511 

ROIs that were consistently detected, i.e., in two or more replicates (Figure 4D). The HATSEQ motif analyses on these 

511 consistently detected ROIs showed a strong enrichment for the STAT-binding site (Figure 4C), and was seen in 

88% of these ROIs. In addition, using HATSEQ we found 47 enriched MSigDB pathways for these 511 ROIs including a 

pathway that involve STAT3 and its targets (Figure 4E).  

CONCLUSIONS 

We present HATSEQ, a tool to analyze both tiling-array and NGS data. We applied HATSEQ to analyze a STAT1 ChIP-

Sequence experiment and detected ROIs that were enriched for the STAT1 motif. In addition, we detected unknown 

as well as previously reported direct target genes of STAT1: STAT2114, STAT3111, IRF1115, IL-27116, PTK2117 and IFNAR2.118 

HATSEQ can be used for single sample analysis or with a set of reference samples whereas the expected regions-of-

interest can be of any size. We showed for both the C/EBPα and H3K4me ChIP-Seq experiments that HATSEQ better 

delineates the peak boundaries. HATSEQ is a powerful tool with an intuitive graphic user interface that lowers the 

barrier for researchers to detect regions-of-interest in genomic signals, and integrates an analysis of these detected 

regions to enhance their functional role.  

AVAILABILITY 

The HATSEQ program is freely available on http://hema13.erasmusmc.nl/index.php/HATSEQ or 

http://www.erasmusmc.nl/hematologie/. The required Matlab Compiler Runtime (MCR) executable is provided. 
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FIGURE LEGENDS 

 

Figure1. Venn diagram and an illustration of a detected ROI for HATSEQ, MACS, and FindPeaks. Detected regions-of-

interest by HATSEQ, MACS and FindPeaks are indicated in red, green and blue respectively. (A) The amount of 

detected ROIs for the C/EBPα experiment, and the overlap between the methods. (B) ROIs detected by the three 

methods on chromosome 1 (around the promoter region of IL6R). The top part of this panel illustrates the pileup or 

coverage that is determined by the sequenced reads. (C) The amount of detected ROIs for the H3K4me experiment 

and the overlap between the methods. (D) ROIs detected in the neighbourhood of SDF2L1 on chromosome 22. The 

top panel of this Figure shows a pileup of the H3K4me experiment as well as a pileup of an H3K4me background 

experiment (giving an indication of the amount of non-specific reads).  
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Figure 2. ROI statistics for the C/EBPα experiment. Statistics for the detected ROIs by HATSEQ, MACS and FindPeaks 

(red, green and blue respectively) for the C/EBPα experiment. (A) Boxplot illustrating the region length of the detected 

regions. (B) Average read depth across the ROI boundaries with respect to the 5’ (left panel) and 3’end (right panel). 

The average read depths are calculated per nucleotide position after aligning the detected ROIs at their 5’ and 3’ ends, 

respectively. The solid line represents the alignment of the 32,735, 50,525 and 75,839 ROIs detected by HATSEQ, 

MACS and FindPeaks respectively. The dashed line represents the alignment of the 4,322, 7,866 and 33,359 ROIs that 

are uniquely detected by HATSEQ, MACS and FindPeaks respectively. (C) Distribution of the average read depth for all 

the detected regions using HATSEQ, MACS and FindPeaks. 

 

Figure 3. ROI statistics for the H3K4me experiment. Statistics for the detected ROIs by HATSEQ, MACS and FindPeaks 

(red, green and blue respectively) for the H3K4me experiment. (A) Boxplot illustrating the region length of the 

detected regions. (B) Average read depth across the ROI boundaries with respect to the 5’ (left panel) and 3’end (right 

panel). The average read depths are calculated per nucleotide position after aligning the detected ROIs at their 5’ and 

3’ ends, respectively. The solid line represents the alignment of the 14,616, 10,694 and 9,471 ROIs detected by 

HATSEQ, MACS and FindPeaks respectively. The dashed line represents the alignment of the 5,330, 1,305 and 601 

ROIs that are uniquely detected by HATSEQ, MACS and FindPeaks respectively. (C) Distribution of the average read 

depth for all the detected regions using HATSEQ, MACS and FindPeaks. 
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Figure 4. HATSEQ results for the STAT1 case study. The HATSEQ results of the STAT1 experiments using six interferon-

γ (IFN-γ) stimulated human HeLa S3 cells compared to seven unstimulated human HeLa S3 cells. (A) Bar graph plot 

that illustrates a ROI that is detected in the promoter of STAT3, and seen across six experiments. The blue bars depicts 

the total number of reads per base pair position, indicated by the left y-axis. The red line illustrates the read depth 

significance score Q(g), which reports how often reads were part of the statistically significant region, indicated by 

the right y-axis. The green bar illustrates the binding site of the expected STAT1 motif. (C) The top enriched motifs, 

among the 511 ROIs detected across two or more replicates. (D) Circos plot illustrating the genes, for which the closest 

detected ROI is detected among 2 or more experiments. A line connects selected genes, based on the chromosomal 

location with the number of experiments that a ROI is detected in. The colors indicate the chromosomal location of 

the genes. (E) Pathway analysis illustrates the enrichment for curated gene sets, computational gene sets, gene 

ontology and positional gene sets (with a maximum of ten gene sets in each category). 
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Retroviral Integration Mutagenesis in Mice and Comparative 

Analysis in Human AML Identify Reduced PTP4A3 Expression as a 

Prognostic Indicator 

Reneé Beekman, Marijke Valkhof, Stefan J. Erkeland, Erdogan Taskesen, Veronika Rockova, Justine K. Peeters, Peter J. 

M. Valk, Bob Löwenberg and Ivo P. Touw 

ABSTRACT 

Acute myeloid leukemia (AML) results from multiple genetic and epigenetic aberrations, many of which remain 

unidentified. Frequent loss of large chromosomal regions marks haplo-insufficiency as one of the major mechanisms 

contributing to leukemogenesis. However, which haplo-insufficient genes (HIGs) are involved in leukemogenesis is 

largely unknown and powerful experimental strategies aimed at their identification are currently lacking. Here, we 

present a new approach to discover HIGs, using retroviral integration mutagenesis in mice in which methylated viral 

integration sites and neighbouring genes were identified. In total we mapped 6 genes which are flanked by methylated 

viral integration sites (mVIS). Three of these, i.e., Lrmp, Hcls1 and Prkrir, were upregulated and one, i.e., Ptp4a3, was 

downregulated in the affected tumor. Next, we investigated the role of PTP4A3 in human AML and we show that 

PTP4A3 expression is a negative prognostic indicator, independent of other prognostic parameters. In conclusion, our 

novel strategy has identified PTP4A3 to potentially have a role in AML, on one hand as a candidate HIG contributing 

to leukemogenesis in mice and on the other hand as a prognostic indicator in human AML. 

INTRODUCTION 

Acute myeloid leukemia (AML) is a complex disease driven by multiple cytogenetic abnormalities, such as inv(16), 

t(8;21), t(15;17), 3q abnormalities, deletions of (the q-arms) of chromosome 5 and 7 and by aberrant expression 

and/or mutations of genes e.g., EVI1, FLT3, RAS, RUNX1, CKIT, WT1, CEBPA and NPM1119,120. The frequent occurrence 

of chromosomal deletions suggests that haplo-insufficiencies contribute to the pathogenesis of AML. However, 

because deleted regions often harbor numerous genes, it remains difficult to pin point critical haplo-insufficient genes 

(HIGs) involved in the pathogenesis of AML. Gene expression profiling (GEP) focusing on downregulated genes could 

be informative, however differences in expression levels may relate to differentiation status of the AML blasts, rather 

than to mechanisms underlying leukemogenesis121. In addition, mapping of minimal affected regions in combination 

with GEP to identify HIGs often is cumbersome because these regions may still contain numerous genes and 

differences in their expression level may be subtle. Even in chromosomal regions frequently lost upon leukemic 

progression, e.g., the q-arm of chromosome 7, identification of critical HIGs remains difficult. 
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Retroviral insertion mutagenesis in mouse models has been used to discover novel genes involved in the development 

of different types of cancer83,85,86. Most of these genes have been classified as proto-oncogenes, owing to the fact 

that proviral integrations preferentially occur in 5′ promoter regions, supposedly leading to increased or sustained 

expression of flanking genes. Only a small minority of identified genes have been classified as tumor suppressor genes 

or HIGs, based on disruption of coding sequences by the proviral integration122,123. Gene therapy studies using murine 

leukemia virus (MLV)-based vectors have shown that epigenetic changes of long terminal repeats (LTRs) of integrated 

proviruses often result in silencing of therapeutic genes124,125, and that preventing methylation of the CpG islands 

within LTRs overcomes this problem126. Based on these observations, we hypothesized that methylation of viral 

sequences not only results in silencing of retroviral genes themselves but may also affect host genes located proximal 

to proviral integrations. Methylated LTRs located in proximity of promoter regions may thus identify genes that are 

deregulated leading to haplo-insufficiency. 

To discover potential HIGs relevant for human AML, we used murine leukemia samples induced by Graffi 1.4 Murine 

Leukemia Virus (Gr1.4 MLV), classified as mixed lineage or myeloid leukemias by immunophenotyping83,127. By 

methylation specific PCR (MSP) and methylated DNA immunoprecipitation (MeDIP)128 we observed an extensive 

variation in the level of DNA methylated proviral integrations in these tumors. We designed a strategy to map 

methylated proviral integrations by combining MeDIP, inverse PCR (iPCR) and promoter array hybridization. We 

identified 6 genes to be flanked by methylated viral integration sites (mVIS), of which Lrmp, Hcls1 and Prkrir were 

transcriptionally upregulated and Ptp4a3 was transcriptionally downregulated. Further studies in human AML samples 

revealed a negative prognostic value of PTP4A3 expression levels, independent of other prognostic indicators. In 

conclusion, by mapping DNA methylated viral integration sites in murine leukemias induced by retroviral integration 

mutagenesis followed by comparative analysis in human AML, we identified PTP4A3 not only as a candidate HIG 

contributing to leukemogenesis in mice but also as an independent prognostic indicator in human AML. 

RESULTS 

Viral integrations sites of the Graffi1.4 MuLV are subject to DNA-methylation 

In this study murine leukemia samples induced by Gr1.4 MLV were analysed83. First, a methylation specific PCR (MSP) 

was performed to determine the level of DNA-methylation of the Gr1.4 MLV LTRs. To this end, amplification products 

from methylated LTRs were quantified with quantitative PCR (qPCR) and corrected for total LTRs in these samples 

(Figure 1A). A considerable variation in LTR methylation was seen between different tumors (data not shown). Based 

on these methylation levels, leukemia samples were divided into 4 methylation categories of equal sample size (1 = 

highest LTR methylation level, 4 = lowest LTR methylation level). 

Subsequently, MeDIP was used on a subset of samples to enrich for methylated LTRs and flanking genomic regions. 

As a control, genomic DNA of normal bone marrow, spleen and liver was used. MeDIP enrichment relative to input 
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levels was determined for the LTR, the non-methylated actin B locus (ActB) and the hemi-methylated imprinting 

control region 1 (ICR1) of H19. As expected, H19 enrichment scores were high and ActB enrichment scores were low 

in all categories (Figure 1B). Additionally, samples in the highest methylation category showed a significantly higher 

LTR enrichment after MeDIP compared to the samples in other categories (P-value <0.001), confirming the specificity 

of the MSP (Figure 1B). 

Ptp4a3 is flanked by a methylated viral integration site and is transcriptionally downregulated 

Genes located near methylated viral integration sites (mVIS) may be downregulated due to the proximity of a 

methylated regulatory sequence, and, their transcriptional downregulation may contribute to murine 

leukemogenesis. Therefore, after showing that a proportion of viral integration sites are subject to DNA-methylation, 

we set out to identify genes flanking these viral integration sites. To this end, iPCR, to amplify regions flanking viral 

integration sites, and MeDIP, to enrich for DNA methylated fragments, were combined to amplify regions flanking 

mVIS (Figure 2). Amplified fragments of 6 tumor samples were hybridized to Murine 1.0 R promoter arrays and, using 

Hypergeometric analysis of tiling-arrays (HAT)89, 15 amplified regions were mapped in these tumors (Table S1). Eight 

of these integrations were validated by directed PCR followed by Sanger sequencing (Figure 3, Table S1). Because 

MLVs tend to integrate within 10 kb around the transcriptional-start-site129, the nearest genes within 10 kb 

downstream of these 8 mVIS were determined (Figure 3, Table S1). 

To support that regions identified in this way were indeed flanked by methylated LTRs, we performed a methylation 

sensitive digestion followed by directed PCR. Using this approach, only viral integration sites flanked by methylated 

LTRs could be amplified (Figure 4A), as was the case for 6 out of 8 identified integrations (Figure 4B, Table S1). 

Subsequently, expression levels of genes flanking these mVIS were quantified by qPCR and compared to normal bone 

marrow expression levels. Unfortunately, RNA of tumor 1 was lacking, therefore this analysis could not be performed 

for Taf12 and Ranbp3. Of the other 4 genes, Ptp4a3 expression was 2–3 fold reduced in the respective tumor (Figure 

4C, Table S1). 

Ptp4a3 is an independent prognostic factor in human AML 

The human orthologue of murine Ptp4a3, i.e., PTP4A3, was further studied in human AML. Transcript levels of PTP4A3 

were assessed in 454 AML samples, diagnosed under the age of 60, profiled using the HGU133 2.0 plus gene 

expression arrays62. PTP4A3 expression values are represented by 2 probesets with a high correlation (Pearson 

correlation coefficient = 0.90). Survival analysis with these probesets gave similar results; all results shown are based 

on expression levels of probeset 206574_s_at. PTP4A3 expression levels were negatively correlated with prognostic 

outcome both for overall survival (OS, P-value <0.0001, hazard ratio = 1.269) and event-free survival (EFS, P-value 

<0.0001, hazard ratio = 1.261). Kaplan-Meier curves are shown in Figure 5. A permutation test predicted a probability 

of 0.0036 for a random gene locus to be a significant prognostic indicator with a P-value <0.0001 for both OS and EFS. 

Multivariate analysis showed that the negative correlation of PTP4A3 expression with event-free survival was 
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independent of other prognostic parameters, i.e., age, white blood cell count, cytogenetic risk, CEBPA mutation status 

and NPM1+FLT3ITD− status (Table 1). 

DISCUSSION 

We designed a strategy to identify candidate HIGs in AML using retroviral integration mutagenesis, by mapping DNA 

methylated proviral integrations. By using HAT89, we deliberately aimed at detecting integrations present in the 

majority of the leukemic cells, which are most likely involved in the early phase of leukemogenesis. At the same time, 

integrations present in subclones that contribute to later stages of leukemic progression will be missed using this 

approach. We identified 6 genes that are flanked by methylated viral integrations. Expression analysis showed that 

Lrmp (lymphoid-restricted membrane protein), Hcls1 (hematopoietic cell specific Lyn substrate 1) and Prkrir (protein-

kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor)) were 

upregulated and Ptp4a3 (protein tyrosine phosphatase type IVA), a phosphatase also known as Prl3 (phosphatase of 

regenerating liver 3) was downregulated in the respective murine tumor. These results indicate that a flanking 

methylated viral integration site does not necessarily lead to transcriptional repression. As 1 out of 4 genes flanked 

by a mVIS was transcriptionally downregulated and expression of the 2 other genes could not be investigated, the 

efficiency to detect potential HIGs by identifying mVIS would approximately be 17–25%. However, the number of 

analysed tumors is too small to allow an accurate estimation of the efficiency. 

Ptp4a3 expression is controlled by p53 induced after DNA damage in mouse embryonic fibroblasts (MEFs) and its 

activity is involved in inducing a G1 cell cycle arrest in these cells130. Surprisingly however, the same study also 

demonstrated a cell cycle arrest upon reduction of PTP4A3 expression130. Apparently, depending on expression level 

dosage, PTP4A3 may have both positive and negative effects on cell cycle regulation. Hence, PTP4A3 haplo-

insufficiency, but not its complete loss, may lead to an impairment of cell cycle arrest after DNA damage. Dosage 

effects of PTP4A3 expression in relation to cellular responses may be more complex, particularly in cancer cells. For 

example, in carcinoma cell lines PTP4A3 expression may lead to downregulation of p53131 and it is variably induced by 

γ-irradiation132. Finally, high PTP4A3 expression has been linked to increased tumor aggressiveness in different types 

of solid tumors, e.g., melanoma, gastric cancer, colon cancer, hepatocellular carcinoma and breast cancer133-138, 

possibly because high PTP4A3 expression leads to increased epithelial-mesenchymal transition138. 

The role of PTP4A3 in hematopoietic malignancies has not been studied as extensively as in carcinoma. Only a few 

studies report differences in expression levels of PTP4A3 in ALL and myeloma subgroups, based on gene expression 

profiling139-141. Interestingly however, in a recent study, PTP4A3 has been proposed to have a role in drug-resistance 

in AMLs with internal tandem duplication of FLT3 (FLT3ITD)142. This finding, together with the observation that high 

PTP4A3 expression negatively correlates with prognostic outcome, indicates that PTP4A3 might be a potential 

therapeutic target in AML. 
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In conclusion, using a retroviral mutagenesis screen in which we enriched for DNA methylated viral integration sites 

we identified PTP4A3 as a potential haplo-insufficient gene with an independent prognostic value in human de novo 

AML. Challenges for the future are to determine the dose-effect of PTP4A3 expression in myeloid development and 

to extend the screens to additional myeloid neoplasms, e.g., myelodysplasia, therapy-related AML, AML secondary to 

bone marrow failure and myeloproliferative disorders. 

MATERIALS AND METHODS 

Ethics statement 

For this study no novel murine leukemias were generated, all experiments described were performed on material 

generated in a previous study83. All animal procedures for the use of control bone marrow fractions were approved 

by the animal care and use committee of the Erasmus MC (approval # 119-10-05). 

All human cell samples were obtained after written informed consent and stored anonymously in a biobank. The study 

was performed under the permission of the Institutional Review Board of the Erasmus MC, registration number MEC-

2008-387. 

Mouse leukemia and normal cell samples 

DNA and RNA samples from a previously generated panel of Gr1.4-induced leukemia's83, and control samples (bone 

marrow, spleen, liver) from normal FVB/N mice were used. 

Methylation specific PCR 

Primer and probe sequences are shown in Table S2. Two µg of genomic DNA was treated with bisulphite using the EZ 

DNA-methylation kit according to the manufacturer's protocol (Zymo research, Orange, CA, USA). LTRs were amplified 

with bsLTRfw and bsLTRrv using 1 µL out of 10 µL of bisulphite-treated DNA. Cycling conditions were 30″ at 94°C, 30″ 

at 50°C and 1′ at 72°C for 10 cycles in a total volume of 50 µL. Two µL was used in a nested qPCR (Figure 1A) using 

MN-LTR-fw×MS-LTR-rv/MN-LTR-rv (MN = methylation neutral, MS = methylation specific). Cycling conditions were 

15″ at 94°C, 30″ at 57°C and 30″ at 60°C for 45 cycles. Amplified LTRs, methylated and unmethylated, were quantified 

using a methylation neutral probe (probe-MN, Sigma-Aldrich, Zwijndrecht, The Netherlands). Delta cycle threshold 

values (dCt), representing the number of methylated LTRs as a fraction of total LTRs, were calculated as follows: dCt 

= Ct(Methylated LTRs)-Ct(All LTRs) = Ct(MN-LTR-fw×MS-LTR-rv) – Ct(MN-LTR-fw×MN-LTR-rv). PCRs were performed 

in duplicate and mean dCt values were calculated. 

MeDIP 

Ten µg genomic DNA was digested overnight with 100 U of DpnII (New England Biolabs, Ipswich, MA, USA). Four µg 

digested DNA was denatured for 10′ at 95°C and incubated with either 2.5 µg anti-5-methylcytidine (BI-MECY-1000, 
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Eurogentec, Liège, Belgium) or mouse pre-immune IgG (Sigma-Aldrich, Zwijndrecht, The Netherlands) in 500 µL IP-

buffer (PBS with 0.05% Triton X-100) for 2 hrs at 4°C, followed by incubation with 30 µL of washed beads (M-280 

sheep-anti-mouse IgG, Invitrogen, San Diego, CA, USA) for 2 hrs at 4°C. Beads were washed 3 times with 700 µL IP-

buffer. As a 10% input reference, 400 ng digested DNA not subjected to MeDIP was used. Beads and the 10% input 

reference DNA were resuspended in 100 µL IP-buffer and incubated for 3 hrs at 50°C after adding 20 µg proteinase K 

(Roche, Basel, Switzerland). Supernatants, containing immunoprecipitated DNA, and the input DNA were purified 

using the MinElute Reaction Cleanup Kit (Qiagen, Hilden, Germany) and were eluted in 40 µL elution buffer. Two µL 

immunoprecipitated DNA was used to amplify the imprinting control region 1 (ICR1) of H19 with H19ICR1fw × 

H19ICR1rv, ActB with ActBfw × ActBrv and the LTR with LTRfw × LTRrv using (q)PCR. Primer sequences are shown in 

Table S2. Cycling conditions were 30″ at 95°C, 30″ at 58°C and 45″ at 72°C for 30 cycles (PCR) or 15″ at 94°C, 30″ at 

59°C and 30″ at 60°C for 45 cycles (qPCR). Amplification products were analysed using gel electrophoresis (PCR) or 

quantified (qPCR) using SYBRgreen Master mix (Applied Biosystems, Foster City, CA, USA). 

Inverse PCR 

Primer sequences are shown in Table S2. Six murine leukemias with high LTR enrichment (more than 10% of input) 

and low ActB enrichment (less than 10% of input) were selected for inverse PCR. Eight µL MeDIP-DNA was denatured 

for 3′ at 95°C, renatured by a temperature decrease of 0.1°C/sec to 20°C, and ligated for 45′ at room temperature 

using a rapid DNA ligation kit (Roche, Basel, Schwitzerland). Two µL out of 20 µl ligated product was amplified with 

primers mL1 and mL2, followed by a nested PCR with primers mL1N and mL2N using 2 µL of the first PCR product. 

Cycling conditions were 30″ at 95°C, 30″ at 60°C (first PCR) or 56°C (nested PCR) and 3′ at 72°C for 30 cycles. In the 

nested PCR 10 mM dCTP, dATP, dGTP, 8 mM dTTP and 2 mM dUTPs were used. 

Promoter array hybridization 

PCR products of 10 nested PCR reactions were purified with a PCR purification kit (Qiagen, Hilden, Germany) and 

pooled. A total of 7.5 µg of these amplified fragments was fragmented and labeled using the GeneChip WT Double 

stranded DNA terminal labeling kit (Affymetrix, Santa Clara, CA, USA). Fragmentation to 66 bp was checked on a 

Bioanalyser (Agilent, Santa Clara, CA). Labeled DNA was hybridized to mouse promoter 1.0R arrays (Affymetrix, Santa 

Clara, CA, USA) for 16 hrs at 45°C. Arrays were washed with the FS_450_0001 protocol using the Fluidics Station 450 

(Affymetrix, Santa Clara, CA, USA), followed by scanning. Probe values were normalized with model-based analysis of 

tiling-arrays (MAT)74 and mVIS were determined using hypergeometric analysis of tiling-arrays (HAT)89, both for HAT 

and MAT default settings were used. Genes located nearby amplified regions were identified using UCSC (assembly 

mm8, Feb. 2006). 

Directed PCR and Sanger sequencing 
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Primers are shown in Table S2; amplification of the integration site was performed with VIS(corresponding gene) × 

LTRfw2, for Lrmp a nested PCR was performed with VIS(Lrmp_nested) × LTRfw. As input, 200 ng of the corresponding 

tumor DNA was used; cycling conditions were 30″ at 95°C, 30″ at 58°C and 45″ at 72°C for 30 cycles. Products were 

purified using the Multiscreen HTS 66-well filtration system (Millipore, Billerica, MA, USA). Sanger sequencing was 

performed with primer LTRfw according to the manufacturer's protocol (Applied Biosystems, Foster City, CA, USA). 

Methylation sensitive restriction analysis 

Primers are shown in Table S2. Two and a half µg of tumor DNA was digested with 25 U of BstU1 (New England Biolabs, 

Ipswich, MA, USA) o/n at 60°C, purified using the Multiscreen HTS 66-well filtration system (Millipore, Billerica, MA, 

USA), eluted in 30 µl and diluted to 50 ng/µl. Amplification of the integration site was performed as described under 

directed PCR and Sanger sequencing, with 100 instead of 200 ng input of DNA. As controls H19 ICR1 (H19ICR1fw × 

H19ICR1rv) and ActB (ActBfw × ActBrv) were amplified. Cycling conditions were 30″ at 95°C, 30″ at 58°C and 45″ at 

72°C for 30 cycles. Amplification products were analysed using gel electrophoresis. 

RNA isolation, cDNA preparation and qPCR 

RNA of murine samples was isolated using Trizol (Invitrogen, San Diego, CA) according to the manufacturer's protocol. 

One µg of RNA was used for cDNA preparation, using SuperScript II Reverse Transcriptase (Invitrogen, San Diego, CA) 

according to the manufacturer's protocol. One µl cDNA was used as input for the qPCR. Genes of interest were 

amplified with their respective forward and reverse primers (Table S2), as an input control, TATA box binding protein 

(Tbp) was analysed. Cycling conditions were 3″ at 95°C and 30″ at 60°C for 45 cycles. Amplification products were 

quantified using Fast SYBRgreen Master mix (Applied Biosystems, Foster City, CA, USA). Expression levels relative to 

Tbp were calculated. 

Survival analysis human AML samples 

Purified AML blasts were obtained following informed consent as described18. Gene expression profiles of 454 de 

novo AML patients under the age of 60 were used for this analysis62. Expression levels were MAS5 normalised (Scaling 

factor 100), values <30 were set at 30, followed by log2 transformation. 

For Ptp4a3, univariate and multivariate survival analyses were performed using expression levels of probesets 

206574_s_at or 209695_at in a Cox regression model. In the multivariate analysis age, white blood cell count, 

cytogenetic risk group, NPM1+FLT3ITD− status and CEBPA mutation status were used as additional prognostic 

parameters. We recognised the following cytogenetic risk groups: favorable = t(15;17), inv(16) and t(8;21), 

unfavorable = t(3;3), inv(3), −7/7q-, −5/5q-, complex karyotype, t(11q23) except t(9;11), t(9;22) and t(6;9), 

intermediate = all other cases with known cytogenetics. Kaplan-meier graphs were generated by dividing the AML 

cohort in 2 groups of equal sample size based on PTP4A3 expression of probe 206574_s_at. Analyses were performed 

in SPSS (version 17, SPPS Inc, Chicago, IL). 
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For the permutation test, all probesets with an annotated gene symbol (based on HG-U133_Plus_2.na32.annot.csv, 

Affymetrix, Santa Clara, CA, USA) were selected. Next probesets with expression levels <30 in all 454 patients were 

discarded, leaving a total of 40720 probesets. The permutation test was performed by randomly selecting 6 probesets 

(representing 6 mVIS), followed by randomly selecting 1 out of these 6 probesets (representing 1 downregulated 

gene). For this probeset a univariate Cox regression analysis was performed for overall survival (OS) and event-free 

survival (EFS). A P-value of <0.0001 (as observed for PTP4A3) was considered significant. This analysis was repeated 

100.000 times, followed by calculating the frequency, i.e., probability, of observing a significant P-value for both OS 

and EFS. Analyses were performed in Matlab (version 2008b, Mathworks, Natick, MA). 
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FIGURE LEGENDS 

 

Figure 1. LTR methylation analysis. (A) Overview of the methylation specific PCR (MSP) approach. Depicted is a 

schematic representation of the Gr1.4 MuLV LTR, containing 23 CpGs. The MSP was performed, after bisulphite 

treatment, with a methylation neutral forward primer (MN-LTR-fw), and a methylation specific (MS-LTR-rv) or neutral 

(MN-LTR-rv) reverse primer. Amplification products were quantified using methylation neutral probe-MN. Tumor 

samples were divided into 4 equal groups based on the methylation status of their LTRs (1 = highest LTR methylation 
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level, 4 = lowest LTR methylation level). (B) Left panel. For H19, the LTR and ActB, average enrichment after MeDIP 

compared to input levels were calculated for each MSP-defined methylation category as well as for normal bone 

marrow, spleen and liver (N). In category 1 to 4 respectively 18, 15, 4 and 3 samples were analysed; error bars indicate 

standard deviations. P-values were calculated using a Wilcoxon test; *significantly higher than other categories, P-

value <0.001. Right panel. Example of LTR enrichment after MeDIP (I = input, + = IP with anti-5-methylcytidine, − = IP 

with pre-immune serum IgG, 1 and 3 = methylation categories, N = normal spleen). 

 

Figure 2. Identification of mVIS. Strategy outline for identification of regions flanking DNA methylated viral integration 

sites (mVIS) within murine leukemias. Genomic DNA was digested with DpnII (step 1), followed by methylated DNA 

immunoprecipitation (MeDIP, step 2). MeDIP enriched fragments were ligated (step 3) and amplified using primers 

within the LTR (step 4). These fragments were hybridized on a DNA promoter array (step 5). Hypergeometric Analysis 

of Tiling-arrays (HAT) was used to identify regions flanking mVIS (step 6). 
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Figure 3. Identified viral integration sites. Eight viral integrations identified with HAT could be confirmed with directed 

PCR and Sanger sequencing (see Table S1 for further details). The graphical output of HAT is represented in graph A–

H. Above each graph, the tumor in which the integration was identified as well as the nearby located gene are 

indicated. The upper panel of each graph shows normalized intensities of the different probes (blue lollipops) on the 

mouse promoter 1.0R arrays and their significance (in red) as calculated with HAT. The black arrowhead indicates the 

exact position of the proviral integration, as determined by directed PCR followed by Sanger sequencing. In the lower 

panel the lowest and highest probe intensity threshold with a significant outcome are given on the left. The stripes 

indicate significantly enriched regions at different probe intensity thresholds, calculated with HAT, which are merged 

into the final viral integration site. Below each graph, the genomic position is indicated (assembly mm8, February 

2006). 

 

Figure 4. Methylation sensitive restriction analysis of viral integration sites and expression of nearby located genes. (A) 

Schematic overview of the methylation specific restriction approach. Genomic DNA was digested with BstU1 (CGCG, 

blocked by DNA-methylation), followed by mVIS amplification with primers as indicated by arrows. If the flanking LTR 

is methylated, mVIS amplification is unaffected upon BstU1 digestion. (B) All 8 identified viral integration sites, 

identified in tumor 1, 2 and 4, were amplified before (−) and after (+) BstU1 digestion. As controls, H19 (hemi-

methylated) and ActB (unmethylated), both containing 2 BstU1 digestion sites, were analysed in each tumor. (C) 

Expression levels of 4 genes flanked by methylated viral integration sites were determined by qPCR in the respective 

tumors. Expression levels relative to housekeeping gene Tbp are shown; error bars indicate standard deviations. 

NBM=normal bone marrow. 
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Figure 5. Survival analysis. A cohort of 454 de novo AML cases diagnosed under the age of 60 was divided into 2 groups 

of equal size based on MAS5 normalised expression of PTP4A3 (probe 206574_s_at). Overall survival (A) and event-

free survival (B) were analysed. P-values were calculated with a log rank test. 

 

Table 1. Multivariate survival analysis. 

Multivariate analysis in 454 de novo AML patients under the age of 60. 
∞WBC higher than 20×109/L versus lower than 20×109/L, 
†compared to intermediate cytogenetic risk, 
‡compared to no NPM1+FLT3ITD-, 
$compared to no CEBPA double mutation. 
*Statistically significant. HR: hazard ratio, CI: confidence interval, WBC: white blood cell count, FLT3ITD: internal tandem 
duplication of FLT3. 

  

Overall Survival Event-Free 

HR (95% CI) HR (95% CI)

PTP4A3  expression 1.112 (0.995–1.243) 0.061 1.131 (1.019–1.255) 0.021*

Age (decades) 1.134 (1.024–1.256) 0.016* 1.068 (0.969–1.177) 0.186

WBC∞ 1.373 (1.063–1.773) 0.015* 1.296 (1.020–1.648) 0.034*

Favorable cytogenetic risk† 0.376 (0.257–0.548) <0.0001* 0.469 (0.335–0.658) <0.0001*

Unfavorable cytogenetic risk† 1.432 (1.059–1.935) 0.020* 1.507 (1.124–2.020) 0.006*

NPM1 +FLT3 ITD- ‡ 0.473 (0.317–0.705) 0.0002* 0.578 (0.398–0.839) 0.004*

CEBPA double mutant$ 0.591 (0.418–0.836) 0.003* 0.560 (0.384–0.815) 0.002*

Risk factor P -value P -value
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SUPPORTING MATERIAL 

 

Table S1. Retroviral integrations. Retroviral integrations identified with HAT are listed. For each integration the murine 

tumor and the genomic position are indicated as well as whether the integration could be confirmed with directed 

PCR and Sanger sequencing. For all integrations that could be confirmed, nearby located genes are given, their 

distance to the retroviral integration and whether the flanking viral integration was DNA methylated as analysed by 

methylation sensitive restriction analysis. Finally, for the 6 genes with a flanking DNA methylated viral integration site 

is indicated if they were downregulated in the respective tumor. 

 

Table S2. Primers and probes.  

Tumor name Chromosome Region start (mm8)
Region stop 

(mm8)
Region Size 

Confirmed by directed 

PCR and Sanger 

sequencing

Exact position integration 

determined with Sanger 

sequencing (mm8)

Nearest 

gene

Distance from 

gene

Flanked by methylated LTR as 

confirmed by methylated 

restriction analysis

Down regulated in tumor

Tumor1 chr4 131546819 131547867 1048 Yes 131547433 Taf12 1st intron Yes Not determined due to lack of material

Tumor1 chr8 75652987 75653413 426 No - - - - -

Tumor1 chr17 56357383 56358047 664 Yes 56357998 Ranbp3 379 bp upstream Yes Not determined due to lack of material

Tumor2 chr1 133792492 133792605 113 No - - 1st intron - -

Tumor2 chr2 164274288 164274798 510 No - - - - -

Tumor2 chr6 145071900 145072481 581 Yes 145071861 Lrmp 7037 bp upstream Yes No

Tumor2 chr16 36853190 36854178 988 Yes 36853575 Hcls1 647 bp upstream Yes No

Tumor2 chr17 34817452 34818970 1518 Yes 34818633 Lta 5230 bp upstream No -

Tumor2 chr19 41047680 41048881 1201 Yes 41048491 Blnk 645 bp upstream No -

Tumor4 chr2 85563399 85563837 438 No - - - - -

Tumor4 chr7 98577174 98577815 641 Yes 98577566 Prkrir 989 bp upstream Yes No

Tumor4 chr15 73575771 73576870 1099 Yes 73576038 Ptp4a3 1st intron Yes Yes

Tumor5 chr2 164334437 164334992 555 No - - - - -

Tumor5 chr3 20436615 20436752 137 No - - - - -

Tumor6 chr15 73575994 73576487 493 No - - - - -

Name Sequenc e

bsLTRfw GAGAAATAGGGAAGTTTAGATTAA

bsLTRrv CCCAAAATAAACAATCAATCAATC

MN-LTR-fw GGTTAAATAGGATATTTGTGGTGAGTAG

MN-LTR-rv AACGAACTAATTAATTAATTCAAATAAAAC

MS-LTR-rv CGAACAAAAACGAAAAACGAA

Probe-MN FAM-AAACCATATCTAAAAACCATCTATTCTTACCCCC-TAMRA

H19 ICR1fw ACATTCACACGAGCATCCAGG

H19 ICR1rv GCTCTTTAGGTTTGGCGCAAT

ActB fw AGCCAACTTTACGCCTAGCGT

ActB rv TCTCAAGATGGACCTAATACG

LTRfw AAAGACCTGAAACGACCTTGC

LTRrv AAGGACCAGCGAGACCACG

mL1 CAACCTGGAAACATCTGATGG

mL2 CCCAAGAACCCTTACTCGGC

mL1N CTTGAAACTGCTGAGGGTTA

mL2N AGTCCTCCGATAGACTGTGTC

LTRfw2 CCAGGTTGCCCCAAAGACCTG

VIS(Taf12 ) CAAGATCCGGGCTTTCAGAC

VIS(Ranbp3 ) GACCAGGCTGCTCTCAAACG

VIS(Lrmp ) GGACACTACACTCATATTTG

VIS(Lrmp_nested ) GTGTGCTATGGGTAATTCAG

VIS(Hcls1 ) TTCTCCTCCTTGCTTTCTGC

VIS(Lta ) CTAGGAGTCTTGTGCATCGTC

VIS(Blnk ) GAGGACAAGCCTAGTGATTTC

VIS(Prkrir ) CTGCTTGTTCACACAAAGTC

VIS(Ptp4a3 ) CAGCCTCCTCTAGCAGTATC

Tbp fw GCTGACCCACCAGCAGTTCAGTA

Tbp rv AAGGAGAACAATTCTGGGTTTGA

Lrmp fw CACAAGGCGAAGAGGCAGTG

Lrmp rv GTGCTCTGTTGGCTCTTCTG

Hcls1 fw CCCTTCTCTGTCCTACCAAG

Hcls1 rv CCTTCATCCACCATCTCAAT

Prkrir fw CTTACCAGTCATTTGAACAAC

Prkrir rv CTTCAAGGGTTAAAGGCAGC

Ptp4a3 fw CCATCCAGTTCATCCGACAG

Ptp4a3 rv GACACAGATGTAATGAGGTAC
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HAT: A Novel Statistical Approach to Discover Functional Regions 

in the Genome 

Erdogan Taskesen, Bas J. Wouters and Ruud Delwel 

ABSTRACT  

Tiling-arrays are useful for exploring local functions of regions of the genome in an unbiased fashion. The exact 

determination of those genomic regions based on tiling-array data, e.g., generated by means of hybridization with 

immunoprecipitated DNA-fragments to the arrays is a challenge. Many different statistical methodologies have been 

developed to find biological relevant regions-of-interest (ROI) by using the quantitative signal intensity of each probe. 

We previously developed a method called Hypergeometric Analysis of Tiling-arrays (HAT) for the analysis of tiling-

array data, but it is developed such that it can also be used to study data derived by genome wide deep sequencing 

approaches. Here we applied HAT to analyze two publicly available Tiling-array data sets. After the detection of 

statistically significant ROI, these are often used in additional analysis for hypothesis testing. We therefore discuss, by 

using the results of the tiling-array experiment, pathway and motif analyses. 

INTRODUCTION 

Tiling-arrays are a subtype of microarrays which are designed with probes that cover contiguous regions of a genome. 

The locations of probes do not necessarily cover genomic regions that are known to be functional, as is the case for 

gene expression or promoter arrays. Therefore tiling-arrays differ from these microarrays as they are not by definition 

designed to cover known or predicted genes in the genome. Moreover, the coverage of probes in unknown genomic 

regions has been useful for exploring the genome in an unbiased fashion. Examples of applications for tiling-arrays 

are: 1) protein-DNA-interaction by conducting chromatin immunoprecipitation (ChIP-on-chip) experiments143, 2) 

epigenetic modifications by Methyl-DNA immunopreciptitation56 (MeDIP-on-chip) or 3) identification of DNAse 

hypersensitive sites, which can be used to predict regulatory elements such as promoter regions, enhancers and 

silencers144. Although tiling-arrays are useful for genome wide studies, the coverage of the genome on the arrays 

depends on the species that is being studied. As an example, probes can cover the majority of a small genome such 

as for Arabidopsis 145 whereas probes will cover only contigs in a large genome, such as for human. Thus for larger 

genomes, as is the case for mouse or humans, the choice of the content depends on the questions one wishes to 

address using a particular tiling-array.  

Each tiling-array produces quantitative signal intensity for each probe by the hybridization of labeled DNA. Normalized 

probe intensities are illustrated by the different peaks in Figure 1, where the colors indicate the probe signals at 

different chromosomes. Although single probe-hybridization with high signal intensity suggest strong hybridization, it 
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is not necessarily the result of specific hybridization of labeled DNA (illustrated by the probes above threshold 1 in 

Figure 1A and 1B). Multiple contiguous probes that show increased signal intensity upon hybridization across a 

particular genomic region are more likely to be the result of true hybridization in a biological experiment. These 

genomic regions are denoted as a putative region-of-interest (ROI). In order to find such ROI, a low threshold must be 

employed which may compromise the results by introducing false positives ROI (Figure 1A and 1B, threshold 2). To 

detect biological relevant ROI, probe intensity signals should be discriminated from non-specific signals. A challenge 

in the analysis of tiling-array data is the detection of true ROI, and to minimize the number of false positives. A 

straightforward approach is to choose a fixed number of consecutive probes above a certain threshold and indicate it 

as a ROI. Nevertheless, this definition of ROI may be inadequate because of the required number of consecutive 

probes and the optimal threshold may be difficult to establish. In addition, the probe-resolution varies across the 

genome, and across different tiling-array platforms. 

Multiple methods have been developed to analyze tiling-array data which all serve one goal, i.e., the detection of true 

ROI and thereby discriminating positive probe intensity from the background. The developed methods differ in their 

statistical approaches: methods incorporate the Hypergeometric distribution89, hidden Markov models146-148, 

correlation structures149, heuristics150, mixture models151, Bayesian modeling152,153, wavelets154, or by using other 

methodologies55,74,155-160. All methods have shown to be useful in filtering large data sets for candidate gene discovery. 

It is of importance to note, that biological experiments are always a necessity to validate particular findings. 

Here we discuss the previously developed method, Hypergeometric Analysis of Tiling-arrays (HAT)89, that uses the 

Hypergeometric distribution to assess the probability of a consecutive number of probes in a particular genomic 

region while controlling multiple testing (Family Wise Error: FWE). Furthermore, HAT uses multiple threshold cut-offs, 

it does not necessarily require experimental replicates, and can be normalized against reference files. It furthermore 

employs a single user defined parameter: the significance level alpha. Note that alpha is not used to determine the 

threshold cut-off using the data distribution (Figure 1B), instead it computes the probability to observe a specific 

number of probes for a particular genomic region (window) over multiple threshold cut-offs. Furthermore, specifying 

parameters such as fragment size may improve the detection of ROI, whereas parameters for gene mapping and 

sequence of interest are required for additional analysis (Figure 2). HAT is generically built and therefore independent 

of probe intensity distribution, probesets coverage and probesets resolution across the genome and tiling-array 

platform. It is successfully applied in multiple types of biological research questions, i.e., the detection of protein-

DNA-interactions (ChIP-on-chip89), identification of genomic locations that are involved in viral integration and 

potentially harbor tumor suppressor genes (MeDIP-on-chip)56, the identification of regions enriched for histone 

modifications such as, trimethylation of histone 3 at lysine 4 or lysine 27 (H3K4 me3, H3K27 me3)89, and for the 

identification of anthocyanin-specific genes that flank enriched genomic DNA in black rice using 3′-TILLING 135 K Oryza 

sativa microarray57. Many detected ROI among these different studies were confirmed by quantitative polymerase 

chain reaction (qPCR).  
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Although tiling-arrays have been applied successfully for genome wide applications, high throughput sequencing of 

for instance chromatin immunoprecipitated DNA-fragments (ChIP-Seq), show genome wide associations in higher 

resolutions and will therefore be superior to chip technology. Even though ChIP-Seq is becoming the standard for 

genome wide applications, numerous high quality tiling-array data sets are publicly available at the the gene 

expression omnibus website (GEO: http://www.ncbi.nlm.nih.gov/geo/). These can be of value to address particular 

research questions raised by investigators and to which HAT may be very useful. Furthermore, although HAT was 

initially developed for the analysis of tiling-array data, the application is not limited to the studies discussed in this 

Chapter, but can be applied for the analysis of ChIP-Seq data as well.  

Here we stepwise discuss how to apply HAT to analyze tiling-array data. As case examples we used two publicly 

available ChIP-on-chip data sets. In addition we discuss two types of analysis that frequently follow-upon the detection 

of ROI, namely motif and pathway analysis.  

MATERIALS 

We previously reported the successful usage of HAT on two novel data sets89. Here we demonstrate HAT on previously 

reported STAT4-chromatin immunoprecipitation (ChIP-on-chip) experiments (n=2), compared to controls (n=2). 

Secondly, we use HAT to analyze the DNA-binding capacity of a C-terminal mutant C/EBPα (n=2), compared to controls 

(ER) (n=2). Both data sets are available on the gene expression omnibus (GEO), GSE19321 and GSE16845 respectively. 

Data were generated using the Affymetrix GeneChip Mouse Promoter 1.0 Array. This chip generates 4.6 million 

perfect match probes over 28000 mouse promoter regions. Promoter regions cover 6kb upstream to 2.5kb 

downstream of 5' transcription start sites. Each probe has a size of 25 basepairs (bp). RAW probe intensity values are 

normalized by utilizing Model-based analysis of tiling-arrays for ChIP-on-chip (MAT) 74,88. 

ANALYZING TILING-ARRAY DATA SETS 

In this paragraph we demonstrate the usage of HAT for the identification of significant ROI and define the parameters 

for ChIP-on-chip experiments. Before starting the peak-detection algorithm (HAT), pre-knowledge about the 

experimental setup is highly recommended. The experimental protocol requires shearing of the DNA by using a 

sonication process which results in DNA-fragments of approximately 600 base pairs (bp). Subsequently, chromatin 

fragments are immunoprecipitated using antibodies directed to the protein-of-interest, known to interact with DNA. 

The consecutive probes can therefore cover up to 600bp after the hybridization process per fragment. This 

information can be used in the model for the detection of ROI. Note that significant ROI can be detected that are 

larger or smaller in width than 600bp. In addition, we set the significance level on 0.05.  

The first ChIP-on-chip data set to which we applied HAT is a study that was previously reported and in which STAT4-

mediated transcriptional regulatory networks in Th1 cell development were investigated143. STAT4 is a critical 
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component in the development of inflammatory adaptive immune responses. Although STAT4 was subject in various 

other studies161,162, it was claimed that the genetic program, activated by STAT4 that results in an inflammatory cell 

type, is not well characterized. A ChIP-on-chip experiment was therefore conducted as previously reported143. Here, 

we analyzed both experimental replicates by choosing a fragment size of 600nt and α: 0.05, and detected n=2903 and 

n=3106 ROI. Moreover, 84% (n=2499) overlapped in both replicates compared to the controls (sized between 215bp-

4543bp, median: 1002bp). It was previously demonstrated that the analysis method, GenPathway, identified 4669 

genes that were seen in both replicates143. This list is subsequently filtered for genes with binding intensity > 4 and 

thereby resulted in 1540 genes. This indicates that using the unfiltered list, GenPathway detects almost twice the 

number of ROI when compared to HAT. To investigate the validity of the ROI that were detected by HAT, a motif 

enrichment analysis was conducted on the 2499 common ROI by using F-MATCH163,164. We hypothesize that the 

detected ROI should contain a STAT-binding site. We detected a total of 38 transcription factor binding sites of which 

the STAT-motifs were highly enriched (P<0.001). Moreover, 7 STAT-motifs were detected in the top 10 after ranking 

the TFBS on significance (Table 1). This suggests high specificity of the detected ROI. Note that the STAT-motif is also 

highly enriched in the genes detected by GenPathway143. Although both methods detected high enrichment for the 

STAT-motifs, the overlap of genes between both methods was 897 genes. In other words, 1211 genes were solely 

detected by HAT and not by GenPathway. To assess the validity of these ROI, we conducted a motif analysis for only 

those 1211 ROI and detected again high enrichment for the STAT-motifs, i.e., 6 STAT-TFBS are detected in the top ten 

ranked list (Table 2). We hypothesize that the 1211 genes may be present in the initial 4669 genes detected by 

GenPathway, but are excluded from the list as these did not comply the above mentioned criteria. This is supported 

by the notion that significantly lower probe intensity levels are observed (P<0.0001) in the 1211 ROI compared to the 

897 ROI. Note that the probe intensity levels, of all the detected ROI, are significantly higher compared to the 

background. Unfortunately, we were not able to analyze the motifs among the exclusively detected genes by 

GenPathway, as the exact genomic positions of the ROI were not specified. These differences may occur due to 

alternatively defined gene mapping procedures Figure 3) and the differences in statistical methodologies. In 

conclusion, we identified another set of genes that were highly enriched for the STAT-motif.  

The second ChIP-on-chip data set is used to study the DNA-binding capacity of a variant of CCAAT enhancer binding 

protein alpha (C/EBPα) that carries a C-terminal-mutation. C/EBPα is a transcription factor and master regulator of 

myeloid differentiation 165,166. It is frequently mutated in patients with acute myeloid leukemia (AML) (5%-14%)44. 

Abnormalities in CEBPA may contribute to a block in differentiation of progenitor cells of granulocytes, which can 

result in leukemogenesis. Mutations in CEBPA are associated with a particular prognosis of patients with AML 44. In 

AML patients, two types of CEBPA mutations are known to exist: mutations in the N-terminus and C-terminus. C-

terminal mutations are found in the DNA-binding domain. Since the mutant protein can still interact with other 

proteins that may interact with DNA, we propose that mutant C/EBPα may indirectly interact with DNA. We wondered 

to which loci mutant C/EBPα might interact in an indirect manner. We created a similar C-terminal-mutation as found 

in one particular human AML patient36, with an insertion of 6 amino acids in the C-terminal bZIP domain. We used it 
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in the ChIP-on-chip experiment to identify genes that may play a role in leukemogenesis. Promoter array 

hybridizations were conducted from a myeloid cell line model (32D), that expresses either beta-estradiol inducible C-

terminal mutant C/EBPα (2 clones) or control-ER (2 clones). The question that we wished to address is whether 

mutated C/EBPα can bind to the DNA, thereby identifying the associated genes. Using a fragment size of 600bp and 

an alpha of 0.05, we detected in total n=89 and n=109 significant binding regions in the two clones with C-terminal 

mutant C/EBPα that was not seen in the controls Figure 4). The ROI are sized between 154 and 2481 nucleotides 

(median 717bp) and forty-eight were commonly detected in both clones. 

We next searched for binding motifs among the detected ROI of the C-terminal mutant C/EBPα. Although it is known 

that the C-terminal mutant C/EBPα lacks binding capacity, we identified three enriched motifs namely, core-binding 

factor (CBF), ETS and ESE-1 (P-value<0.001). Core-binding factors have been shown to fulfil an important role in 

haematopoiesis167 and ETS family members, such as ESE-1, fulfil an important role in several signal transduction 

pathways168-170. As expected, we did not find the consensus binding motif CEBP as we showed previously for wild-type 

C/EBPα using the same model system 89. The detection of these three enriched motifs and the absence of the CEBP 

motif suggest that DNA-binding by mutant C/EBPα had occurred indirectly. We hypothesized that other factors may 

influence the DNA-binding capacity and therefore analyzed the 2kb upstream regions, from the transcriptional-start-

site (TSS) of the detected genes (Figure 4). This resulted in the detection of 71 enriched TFBS with P≤0.001 and 1.5 

times more frequently observed than in the reference set (fold-increase ≥ 1.5). As a reference set we selected 2kb 

upstream sequences (starting from the transcription start site) of 5000 randomly selected genes. The 2kb upstream 

sequences are gathered using the UCSC database (http://hgdownload.cse.ucsc.edu). The top 15 TFBSs are depicted 

in Table 3. 

DETECTED REGIONS-OF-INTEREST CAN BE MAPPED TO GENES THAT ARE LOCATED 

IN CLOSE VICINITY  

Although the goal is to detect ROI by using ChIP-on-chip tiling-arrays, it often requires additional analysis, such as 

pathway analysis, to test a particular hypothesis. This requires the mapping of ROI to genes. Each ROI can, 

theoretically, be mapped to four genes that are located on: 1. the positive strand and upstream, 2. the positive strand 

and downstream, 3. the negative strand and upstream, and 4. the negative strand and downstream (Figure 3). From 

these four genes, only one gene may be targeted (or two genes in a bi-directional promoter region). For promoter 

tiling-arrays, where only the promoter regions are present on chip, it is straightforward to map the detected ROI to 

the nearest located transcriptional-start-site (TSS) of a gene. To prevent incorrect gene mapping, due to differences 

in genomic locations of TSS between species and/or genomic-build (hg18, hg19 for human and mm8, mm9 for mus 

musculus, it is highly recommended to use the same species and genomic-build for both the gene mapping file as the 

one used in the normalization process. These gene mapping files can be downloaded from the UCSC: 

http://hgdownload.cse.ucsc.edu.  
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Manually curating each detected ROI to a particular gene is possible using the UCSC genome browser track (generated 

using HAT, Figure 2) but can be time consuming. Alternatively, by specifying the species and genome build in HAT, 

each ROI can automatically be mapped to the TSS of a gene in closest vicinity. We specified in both ChIP-on-chip 

experiments "mm8" because the experimental samples were derived from mus musculus and normalized with 

genomic-build 8. Because both analyzed data sets have been generated using promoter tiling-arrays, it allowed the 

mapping of the ROI to genes in close vicinity. For the STAT-study, the 2499 detected ROI were mapped to 2108 unique 

genes. For the C/EBPα-study, it resulted in the detection of 140 unique genes. These are graphically illustrated using 

a circos-plot96 (Figure 4). Such graphical representation indicates the chromosomal location of the genes, and whether 

genes are commonly detected in the independent experiments using different clones.  

MOTIF AND PATHWAY ANALYSIS ON THE DETECTED REGIONS-OF-INTEREST AND 

THEIR FLANKING GENES 

Analysis on the detected ROI or the genes that are located in close vicinity of the ROI, is an important next step for 

hypothesis testing. Both motif and pathway analysis are therefore useful in tiling-array studies (Figure 2).  

Motif analysis detects specific sequences involved directly in protein-DNA-binding interactions, or alternatively 

whether the promoter regions of the flanking genes include overrepresented sequences of transcription factors. 

These so called transcription factor binding sites (TFBS) may suggest that the protein-of-interest interacts 

synergistically with other proteins or is involved in the formation of protein-complexes. In general, two types of motif 

analysis exist: by using known TFBS that are derived from published collections (e.g., JASPAR or TRANSFAC databases). 

These databases should be used when seeking specific factors or structural classes. Secondly, dé-novo motif analysis 

can be used to analyze similarities among the sequences to produce a description for each pattern it discovers. F-

MATCH163,164 and MEME112 are two algorithms which can be used for the detection of known TFBSs and/or dé-novo 

motifs. These methods are online accessible and require FASTA files as an input, which contain sequences of the ROI 

(generated by HAT). 

Besides motif analysis, it can be useful to analyze the detected genes for enriched pathways. Pathway analysis is the 

process of identifying interactions and associated annotations171. For the detected flanking genes it may provide 

insight how genes are regulated and which processes, functions or networks were involved. Both commercial and 

noncommercial entities provide pathway analysis. A commercial tool is Ingenuity Pathway Analysis (Ingenuity® 

Systems, http://www.ingenuity.com, IPA 8.8). Networks in IPA are created using literature-based records that are 

maintained in the Ingenuity Pathway Knowledge Base. It computes a network-score for the overlap of the focus genes 

with a global molecular network. Alternatively, Gene Set Enrichment Analysis (GSEA)97 provides both software and a 

collection of annotated gene sets (MSigDB: Molecular Signature Database) that can be used for the detection of 

pathways and/or gene sets (noncommercial). Depending on the research question, different gene sets can be used: 

1. BioCarta pathways, describing the molecular relationships derived from active research areas, 2. KEGG pathways, 
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describing the molecular interactions and reaction networks, 3. Reactome pathways, manually curated and peer-

reviewed pathways, 4. GO biological processes, gene sets describing the biological process ontology, 5. Transcription 

factor targets (TFT), gene sets contain genes that share a transcription factor binding site (TFBS), and 6. MicroRNA 

targets, Gene sets that contain genes that share a 3' UTR microRNA-binding motif. 

NOTES 

Different methodologies come to different results, what is the correct one to choose? 

All previously described methods have been reported to validate some of the detected ROI as described in the first 

section, “Introduction”. Nevertheless, different statistical methodologies lead to differences in the detected ROI. We 

hypothesize that various methodologies may results in similar detected ROI which are most likely the genomic regions 

that contain a contiguous number of probes with high probe intensity levels (the results of two methods are shown 

in section 3 "Analyzing tiling-array data sets"). In addition, the differences between detected ROI among various 

methodologies are likely the genomic regions with subtle changes in probe intensity levels. Note that some developed 

methodologies are designed for the analysis of one type of tiling-array application. Others may require various 

parameters to set before starting the analysis, e.g., by defining the ROI using the maximum and/or minimum number 

of probes in a genomic region, maximum gap size between two probes and threshold. Changing one of the parameters 

will affect the final results. It is therefore always recommended to perform additional analysis after the detection of 

ROI to ensure confidence about the gained results. We demonstrated this in section 3 "Analyzing tiling-array data 

sets", where we detected 1211 ROI that were exclusively found for HAT. A motif analysis showed significant 

enrichment for the STAT-consensus binding site. Such findings may help deciding which method to use. It is important 

to note that in the end laboratory experiments are indispensable to demonstrate the biological significance of 

particular that ROI, identified by means of tiling-array analysis. 

How to continue if no significant regions-of-interest are detected? 

The analysis of tiling-array data (section 3 “Analyzing tiling-array data sets”) can result in the absence of significantly 

enriched ROI. This indicates that probe intensity values, by the hybridization of DNA-fragments on chip, showed no 

significant differences compared to the background data-file. In case the hybridization process on chip is successfully 

performed (i.e., DNA-fragments are immunoprecipitated) and the background data-file is correctly provided into the 

model, it still may result in the absence of significantly enriched ROI. Note that analysing experimental data-files 

without the usage or incorrect usage of a background data-file can lead to the absence of significantly enriched ROI 

or the detection of false positive ROI. If no significantly enriched ROI are detected, it should be considered that no 

DNA-binding did take place and therefore no ROI were detected. Alternatively, one could decide to increase the 

significance level alpha and rerun the analysis. Note that the false positive rate increases by using alpha>0.05. It is 

therefore highly recommended to validate the ROI by qPCR. As an example, it is demonstrated that a MeDIP-on-chip 
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experiment resulted in the detection of 15 ROI56. These are detected without using a background56. Although there 

was supporting evidence that all 15 ROI may be valid (additional analysis showed that all ROI contained a nearby 

restriction site), only eight viral integration sites could be validated by directed PCR followed by Sanger sequencing56. 

The remaining seven ROI may therefore be the result of technical variation which may have been prevented by using 

a background file.  

How to determine the best flanking gene for a detected regions-of-interest? 

The usage of tiling-array data does not provide information regarding the strand (positive or negative) or genes 

affected by the putative promoter. It only indicates the probe intensity values and their genomic positions. If a 

particular genomic region is marked as a potential ROI, the responsible immunoprecipitated DNA-fragment is 

suggested to show binding, e.g., via an immunoprecipitated transcription factor, that could bind to the DNA strand. 

The ROI is then linked to the gene in close vicinity (Figure 3). The use of an UCSC-browser track may help manually 

curating the ROI to a gene. Alternatively, it requires biological experiments to validate whether the binding had an 

effect on the regulation of a gene. Note that promoter tiling-arrays (as described in section 2 "materials") only contain 

probes of which the genomic locations are in the promoter regions of genes and therefore simplifies the gene mapping 

procedure.  

How to run HAT with RAW cell files? 

HAT is built generically to analyze different applications and platforms of tiling-array data (as described in section 

"Introduction"). On the contrary, normalization may differ between different applications and platforms of tiling-

arrays, e.g., one-color arrays of Affymetrix versus two-color arrays of Nimblegen. Including a normalization step into 

the model would therefore limit the model to one type of tiling-array. RAW cell files need to be normalized based on 

the type of tiling-array88, and then used as an input into the model (Figure 2).  

How to prevent “out-of-memory” problems when analyzing tiling-array data? 

When using HAT, it is recommended to use at least 4GB of RAM memory and Windows-64bits version or UNIX-based 

system. The methodology is tested on tiling-array data containing 4.6 million perfect match probes, and developed in 

such a way that it is analyzes per chromosome which reduces high memory loads. Nevertheless, when memory 

problems occur, it is recommended to kill unused running processes when running HAT. In a Windows environment 

this can be done in the “task manager”; find the "Run" window in the start-menu en type "taskmgr" and then press 

“Ok” or press the <ENTER>-key. 

How to install HAT in Windows or an UNIX environment? 

The installation of HAT requires an x86-64 Windows or UNIX-based system and 4GB memory or more is highly 

recommended. Both platforms require the installation of MATLAB or the freely available MATLAB Compiler Runtime 
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(MCR) which is a standalone set of shared libraries that enable full functioning of HAT. Documentation regarding the 

installation procedure can be found on: http://www.erasmusmc.nl/hematologie/ or 

http://hema13.erasmusmc.nl/index.php/HATSEQ 
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FIGURE LEGENDS 

 

Figure 1. Graphical representation of probe intensities in a ChIP-on-chip tiling-array experiment. (A) Normalized probe 

intensity of 4.6 million probes among 22 chromosomes. Colours illustrate the different chromosomes whereas the 

length of a lollipop represents the probe intensity. (B) Distribution of the probe intensity values. The probe intensity 

values are normalized against a reference file. Threshold 1 indicates a high threshold cut-off whereas threshold 2 

indicates a low intensity cut-off. HAT uses many different threshold cut-offs to determine significantly enriched ROI. 
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Figure 2. Schematic overview of tiling-array data analysis. Stepwise illustration of normalized tiling-array data towards 

the detection of significantly enriched ROI, the flanking genes, sequences files (FASTA), motif analysis, pathway 

analysis and the UCSC-browser.  

 

Figure 3. Mapping of detected regions-of-interest to genes located in close vicinity. A single ROI is illustrated with four 

neighbouring genes: two on the positive-strand (upstream and downstream) and two on the negative-strand 

(upstream and downstream). Mapping of ROI to genes is crucial for additional analysis (e.g., pathway analysis). 

Abbreviations, ROI: Region-of-interest, TSS: Transcriptional-start-site, 3': Three prime UTR, 5': Five prime UTR. 
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Figure 4. Graphical representation of the genes that are bound by the C-terminal mutant C/EBPα. One hundred and 

forty mapped genes from the detected ROI of the C-terminal mutant C/EBPα experiments are illustrated. Candidate 

genes in experiment 1 are indicated by the red box whereas the candidate genes from experiment 2 are indicated by 
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the blue box. Forty-six genes (mapped from 48 ROI) that overlap between experiment 1 and 2 are indicated with a 

red text-color. Line-colors are colored similar as the chromosomes which are numbered from 1-19 and X, and show 

the relative location of the genes using mouse genome build 8 (mm8). 

 

Table 1. Motif enrichment analysis on the detected regions-of-interest in the STAT4 experiment. The top 10 enriched 

TFBS among the detected binding regions using HAT for the STAT4-study (ChIP-on-chip). A TFBS is called when the 

position weight matrices (PWM) are enriched at P ≤ 0.001. Recognized factors: the transcription factors that are 

recognized by the TFBS. Fold-increase: the frequency that a TFBS is detected among the binding regions compared to 

the reference set (5000 randomly chosen genes). 

 

Table 2. Motif enrichment analysis on the detected regions-of-interest that are exclusively detected using HAT in the 

STAT4 experiment. The top 10 enriched TFBS among the exclusively detected binding regions of HAT for the STAT4-

study (ChIP-on-chip). A TFBS is called when the position weight matrices (PWM) is enriched at P ≤ 0.001. Recognized 

factors: the transcription factors that are recognized by the TFBS. Fold-increase: the frequency that a TFBS is detected 

among the binding regions compared to the reference set (5000 randomly chosen genes). 

Transcription Factor Recognized factors Fold-increase P -value

V$STAT1_01 STAT1, STAT1alpha, STAT1beta 8.059 5.53E-29

V$STAT5B_01 STAT5A, STAT5B 4.092 1.05E-26

V$STAT1_05 STAT1 5.611 2.15E-26

V$STAT_01
STAT1, STAT1alpha, STAT1beta, STAT2, STAT3, STAT3-isoform1, STAT4, 

STAT5A, STAT5B, STAT6
3.542 5.45E-22

V$STAT3_01 STAT3, STAT3-isoform1 5.963 1.34E-19

V$STAT1STAT1_Q3 CBF3, STAT1:STAT1, ehf 4.046 1.11E-18

V$IRF_Q6
IRF-10, IRF-2, IRF-3, IRF-4, IRF-5, IRF-6, IRF-7, IRF-7A, IRF-7B, IRF-7H, 

IRF-8, IRF4-1, irf1
3.603 1.08E-11

V$AP1_Q6_01

AP-1, FOSB, FosB, Fra-1, Fra-2, JunB, JunB:Fra-1, JunB:Fra-2, JunD, 

JunD:Fra-2, JunD:deltaFosB, c-Fos, c-Jun, c-Jun:FosB, c-Jun:JunD, c-

Jun:c-Fos, deltaFosB

2.703 2.04E-11

V$STAT5A_01 STAT5A 4.080 3.81E-11

V$BACH1_01 Bach1, Bach1t 3.121 3.35E-09

Transcription Factor Recognized factors Fold-increase P -value

V$STAT1_01
STAT1, STAT1alpha, STAT1beta, STAT2, STAT3, STAT3-

isoform1, STAT4, STAT5A, STAT5B, STAT6
7.235 4.96E-16

V$STAT3_01 STAT3, STAT3-isoform1 5.862 7.36E-12

V$STAT5B_01 STAT5A, STAT5B 3.633 2.16E-11

V$STAT1_05 STAT1 4.658 2.45E-09

V$STAT_01 STAT1, STAT1alpha, STAT1beta 3.405 4.05E-09

V$GADP_01 GABP 4.416 1.88E-08

V$SAP1A_01 SAP-1a 4.106 5.32E-08

V$STAT1STAT1_Q3 CBF3, STAT1:STAT1, ehf 3.507 5.26E-07

V$ELK1_02 Elk-1, Elk1-isoform1 4.025 7.68E-07

V$CETS1P54_01 Ets-1, Ets-1 deltaVII, c-Ets-1, c-Ets-1 54, c-Ets-1A, c-Ets-1B 3.981 8.78E-07
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Table 3. Motif enrichment analysis on the 2kb upstream regions-of-interest of the C-terminal mutant C/EBPα target 

genes. The top 15 enriched TFBS among the 2kb upstream genes of the C-terminal mutant ROI. A TFBS is called when 

the position weight matrices (PWM) are enriched at P ≤ 0.001 and with fold-increase>1.5. Recognized factors: the 

transcription factors that are recognized by the TFBS. Fold-increase: the frequency that a TFBS is detected among the 

binding regions compared to the reference set (5000 randomly chosen genes). 

Transcription Factor Recognized factors Fold-increase P -value

V$POU3F2_02 POU3F2, POU3F2 (N-Oct-5a), POU3F2 (N-Oct-5b) 1.948 6.81E-12

V$CDP_02 CDP, CDP-isoform1, CDP2 2.072 9.86E-09

V$FOXP3_Q4 FOXP3 4.753 5.98E-08

V$OCT1_01 Oct-1, POU2F1, POU2F1a 1.713 6.24E-08

V$IPF1_Q6 PDX1, ipf1 1.605 1.37E-07

V$CLOX_01 Cutl 1.756 8.19E-07

V$SATB1_01 CBF-C 1.587 8.48E-07

V$OTX_Q1 Otx1, Otx2 1.903 9.09E-07

V$HMGIY_Q3 HMGI-C, HMGIY, HMGIY-isoform1, HMGIY-isoform2 1.546 1.72E-06

V$FOXO1_01 FOXO1A 1.714 1.93E-06

V$DMRT4_01 DMRT4 1.581 2.29E-06

V$NFAT_Q6
NF-AT, NF-AT1, NF-AT1C, NF-AT2, NF-AT3, NF-AT4, NFAT1, NFAT1-

isoformD
3.009 2.74E-06

V$TEF_Q6

TEF-xbb1, Thyrotroph embryonic factor, Thyrotroph embryonic factor-

isoform1, Thyrotroph embryonic factor-isoform2, Thyrotroph embryonic 

factor-isoform3, VBP

1.955 5.14E-06

V$SRF_C SRF, SRF-I, SRF-L, SRF-M, SRF-S 2.111 5.91E-06

V$CEBPGAMMA_Q6 C/EBPgamma 1.828 6.50E-06
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A Repressor Function of C/EBPα is Indicated by using Combined 

Gene Expression Profiling in AML and Chromatin 

Immunoprecipitation Data  

Erdogan Taskesen, Bas J. Wouters, Roberto Avellino, Meritxell AlberichJorda, Daniel G. Tenen, Jeroen de Ridder, Peter 

J.M. Valk, Claudia A. Erpelinck-Verschueren, Marcel J.T. Reinders and Ruud Delwel 

ABSTRACT 

C/EBPα is a transcription regulator that is essential for normal neutrophil development. We hypothesize that 

methylation and consequent silencing of the gene encoding C/EBPα is an abnormal event that occurs in a subset of 

human acute leukemias. This recently identified CEBPAsilenced group subtype has a unique epigenetic feature, i.e. 

silencing of the gene that encodes CCAAT-enhancer binding protein alpha (C/EBPα) by DNA hypermethylation. The 

leukemic blast cells of these patients express myeloid as well as T-lymphoid markers. Moreover, gene expression and 

DNA-methylation profiling stratifies these leukemias in between Acute Myeloid Leukemia (AML) and T-lymphoid Acute 

Lymphoblastic Leukemia (T-ALL). We carried out gene expression profiling of the CEBPAsilenced group and identified the 

genes that were differentially expressed in this AML subtype compared to other AMLs and normal marrow blast cells. 

To assess whether these genes are C/EBPα targets and whether expression has been altered as the result of CEBPA 

loss of expression, we transduced an estrogen-inducible C/EBPα construct in 32D cells and carried out ChIP-on-chip 

using ER specific antibodies. We detected 529 C/EBPα target genes that were subsequently overlaid with the 

differentially expressed genes in the CEBPAsilenced group. This resulted in 49 overlapping genes (P=1x10-7) that are 

indicative as putative direct targets. We hypothesized that the downregulated genes, that overlap with the C/EBPα 

target genes (n=25, P=1.2x10-3) represent targets that are normally activated by wild-type C/EBPα. The upregulated 

genes, that overlap with the C/EBPα target genes (n=24, P=1.6x10-5) are assumed to be repressed in wild-type C/EBPα 

expressing cells and activated when CEBPA is silenced. A selection of the latter group of genes appeared to be 

upregulated in hematopoietic stem cells of Cebpa knock-out mice as well, emphasizing a putative repressor function 

of this transcription factor for certain genes. We hypothesize that CEBPA silencing is a transforming event that allows 

the expression of lymphoid genes to take place in a subset of leukemias with myeloid/T-lymphoid features. These 

genes are predicted to be repressed by direct promoter interaction with C/EBPα in normal myeloid progenitors and 

in other AMLs.  

INTRODUCTION 

Myeloid committed progenitors are under tight control of combinations of transcription factors that modulate gene 

expression in order to maintain a balance between differentiation and proliferation. Transcription factor 



91 
 

CCAAT/enhancer binding protein alpha (C/EBPα) is one of the master regulators of myeloid differentiation165,166. 

C/EBPα mRNA encodes a 42kDa (p42) protein, and a shorter isoform of 30kDa (p30)53,172-174. Both isoforms share a 

highly conserved C-Terminal domain that contains a basic region required for DNA-binding and a leucine zipper (bZIP) 

essential for homo or heterodimerization. The N-terminal domain is less conserved and consists of two transcription 

activation domains (TADs) that contribute to cell growth inhibition. Both isoforms appear to be expressed at a 

constant ratio which is possibly required to maintain the function of C/EBPα and regulate normal differentiation. 

Deregulation of CEBPA expression causes an imbalance in myeloid differentiation175. In Cebpa knock-out mice, 

neutrophil development is disrupted and consequently only myeloblasts are detectable in the marrow of these 

mice175. The functional importance of CEBPA in myelopoeisis is further supported by its deregulation in various subsets 

of AML patients18. In AML with recurrent translocations t(8;21), expressing the translocation specific AML1-ETO fusion 

gene, CEBPA has been reported to be downregulated by the oncogenic fusion protein176. Mutations in CEBPA, the 

gene encoding C/EBPα, have been demonstrated in multiple studies52,53,177. These mutations have been found in the 

N-terminus or in the C-terminus of the protein, and can either occur in a monoallelic or biallelic fashion178,179. As a 

consequence, these mutations impair differentiation of hematopoietic progenitors40,180.  

A subset of AML patients, previously characterized as CEBPAsilenced AMLs, lack CEBPA expression due to an aberrant 

DNA hypermethylation pattern. This subset of patients have a distinct phenotype when compared to other AMLs; 

their leukemic cells express myeloid surface antigens CD13 and CD33 as well as T-lymphoid markers. The most 

consistently expressed surface protein is CD7, while other T-cell related genes are also expressed such as LCK, TRIB2, 

CD3D, CD3G, TRD@ and NOTCH161. We recently demonstrated a similar reverse correlation between CEBPA and 

lymphoid genes in myeloblasts from Cebpa knock-out mice175 61. These findings made us hypothesize that there is a 

negative regulatory control of a set of genes by C/EBPα and that these genes, of which many are T-cell related, are 

transcriptionally activated in case the expression of CEBPA is turned down. The data that we provide in this study are 

in support of a hypothesis of a direct negative regulatory control of a set of genes by C/EBPα.  

MATERIAL AND METHODS 

DATA 

Two Large scale datasets were used in this study: ChIP-on-chip data using Affymetrix GeneChip Mouse Promoter 1.0 

array, derived from an inducible CEBPA expressing myeloid cell line model of three wild-type C/EBPα-ER clones and 

two control clones (C/EBPα-mutant-ER) and three control clones expressing a construct that only contains ER. Data is 

available at the NCBI Gene Expression Omnibus (GEO), accession number GSE19321. Secondly, genome wide gene 

expression profiles were generated for 506 de novo AMLs and 11 normal CD34+, using Affymetrix U133 Plus 2 

microarray (Santa Clara, CA, USA) previously18. GEP data are available at the Gene Expression Omnibus (National 

Center for Biotechnology Information; accession number GSE14468 (HOVON-SAKK cohort). Sample processing and 

quality control were carried out as described previously18,181. Normalization of raw data was processed with Affymetrix 
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Microarray Suite 5 (MAS5) to target intensity values at 100. Intensity values were log2 transformed and mean centered 

per probeset.  

Chromatin immunoprecipitation on DNA promoter microarrays 

Chromatin immunoprecipitation (ChIP) was carried out according to a protocol from Affymetrix (Santa Clara, CA, USA). 

Genome wide discovery of C/EBPα targets was conducted using ChIP from a beta-estradiol induced C/EBPα in a 

myeloid cell line model (32D) followed by promoter array hybridizations (for details see supplementary material, 

section: C/EBPα-ER cells differentiate upon E2 treatment while C/EBPα-mutant-ER cells show impaired 

differentiation). This chip contains 4.6 million perfect match probes over 28000 mouse promoter-regions. Promoter-

regions have 10Kb coverage for each promoter-region and each probe has a size of 25 nucleotides. Clones express 

either beta-estradiol inducible C/EBPα-ER or beta-estradiol inducible C/EBPα-mutant-ER. The mutant has an insertion 

of 6 amino acids in the bZIP domain and previously found in a human AML patient36 (for details see supplementary 

material, section: Plasmids). It showed less pronounced inhibition of proliferation upon treatment with E2 in the 

presence of IL3. In the presence of G-CSF, C/EBPα-mutant-ER cells also demonstrated delayed differentiation with the 

suggestion of a partial block. Chromatin immunoprecipitations were carried out using an antibody directed against ER 

in the beta-estradiol treated cells (E2 for 4 hours) and the DNA obtained from these cells, after immunoprecipitation, 

was hybridized to Affymetrix promoter chips. 

METHODS 

Aberrant genes that are specific for the CEBPAsilenced group in human AML are derived by comparing the gene 

expression data of the CEBPAsilenced patients (n=10) against CD34+ samples (n=11) and against the remaining AML group 

(n=496) using a three-way ANOVA and a post-hoc test. The post-hoc test is based on the tukey-kramer method which 

is used to select genes that significantly differed between: 1) CEBPAsilenced group versus CD34+ group and, 2) 

CEBPAsilenced group versus the other AMLs. Genes are considered to be differentially expressed when mRNA levels 

differed with P ≤ 0.05 after multiple testing (using the family wise error rate, FWER).  

Binding of C/EBPα in 32D cells was determined by utilizing Hypergeometric Analysis of Tiling-arrays (HAT182) after 

normalization of the raw probe intensity data74. As a result of this normalization, probe intensity values follow a 

normal distribution with a negative mean. Probe intensities that may be the result of hybridization of labeled DNA on 

the chip, have values greater than zero and are processed to determine candidate C/EBPα binding regions. A binding 

event was called when fragments are enriched with significance level < 0.05 and, maximum fragment size of 600bp. 

This fragment size correlates with the average sonicated fragment sizes, being 600bp. Furthermore, we considered 

only genes from which the enriched binding region to the transcriptional-start-site (TSS) was located within 2Kb and, 

binding of C/EBPα in the promoter-region was detected in two or more clones. Gene-symbols are annotated using 

HAT182 and mapped using NCBI murine Genome Build 36 (February 2006). This resulted in the identification of 529 
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unique genes, by comparing C/EBPα-ER clones (n=3) versus C/EBPα-mutant-ER clones (n=2). It is expected that the 

mutations inserted in the bZIP domain of C/EBPα-mutant-ER clones disrupt the physical binding of C/EBPα with DNA 

motif sequences of downstream target genes. More detailed information about the detected binding regions and 

enriched motifs can be found in supplementary material (candidate C/EBPα targets: ChIP-on-chip promoter arrays). 

Transcription Factor Binding Site analysis - For the identification of transcription factor binding sites (TFBSs), we used 

F-MATCH163 to scan the 2Kb upstream regions, from the TSS, for occurrence of one or more of the 656 highly specific 

position weight matrices (high-PWMs) gathered from the TRANSFAC Pro database. A TFBS was called when its PWM 

is enriched at P ≤ 0.001. As a background set we selected 2Kb upstream sequences (starting from the transcription 

start site) of 5000 randomly selected genes that are not associated with C/EBPα in terms of binding, using the 32D 

model-system or identified as differential expressed for the C/EBPαsilenced group. The 2Kb upstream sequences for 

each gene were retrieved from the UCSC database (http://hgdownload.cse.ucsc.edu/goldenPath/). 

RESULTS 

Genes involved in T-cell development are differentially upregulated in CEBPAsilenced leukemias. 

To identify genes differentially expressed in CEBPAsilenced AMLs (n=10), we compared their gene expression profiles 

with those of CD34+ normal bone marrow (n=11) and of the other AML cases18 (n=496). Six hundred eighty-nine 

differentially expressed genes were identified in CEBPAsilenced leukemias, of which 286 (blue circle in Figure 1A) were 

upregulated and 403 downregulated (green circle in Figure 1A). Twenty pathways were significantly represented by 

Ingenuity pathway analysis (IPA) using both up and downregulated genes (Figure 1B and Table S1). Genes involved in 

T-cell development appeared to be highly enriched. Notably, the genes upregulated in CEBPAsilenced leukemias were 

more frequently annotated with T-cell functions than the downregulated genes. Therefore we carried out pathway 

analysis of the 286 upregulated or 403 downregulated genes separately and identified 42 and 80 unique pathways 

(P<0.001) respectively (Table S1). We indeed observed associations with (T-) lymphocytes for the enriched pathways 

specific for the upregulated genes in CEBPAsilenced leukemias (Figure S1A and Table S1). Pathways specific for the 

downregulated genes (Figure S1B and Table S1) included myeloid associations, such as pathways that are involved 

with macrophage, neutrophil or dendritic cell development. Besides analysing the pathways associated with 

molecular, cellular and developmental functions we also analysed the canonical pathways and detected a strong 

relation with T-cell development/function for the upregulated genes, in contrast to the downregulated genes in 

leukemias with CEBPA being switched off (Figure S2 and Table S2). These data suggest a relation between the absence 

of CEBPA and activation of T-cell related genes.  

We next investigated the presence of transcription factor binding sites (TFBSs) in the promoter regions (2Kb upstream 

region of the TSS) for the 286 upregulated and 403 downregulated genes. We detected 13 and 4 unique significantly 

enriched TFBSs with fold-increase > 1.5 respectively (Table S3). Among the upregulated or downregulated genes we 
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did not detect C/EBPα consensus binding sites (CEBP). We predict that only a fraction of the differentially expressed 

genes are true targets of C/EBPα, which would explain why no consensus site was found.  

C/EBPα requires its DNA-binding domain to induce myeloid differentiation. 

Abnormal myeloid maturation in the bone marrow of Cebpa knock-out mice defines the critical function of CEBPA as 

a potent inducer of myeloid differentiation. Upon the loss of CEBPA expression in CEBPAsilenced AML, it is hypothesized 

that a subset of genes involved in myeloid lineage commitment and differentiation are aberrantly regulated and 

differentially expressed. Briefly, cells were retroviral transduced with murine C/EBPα coding sequence fused to the 

ligand-binding domain (LBD) of the human estrogen receptor alpha (ERa) (C/EBPα-ER), acting as an inducible system 

upon estradiol (E2) exposure. The LBD of ERa engages E2, become activated and relocate to the nucleus as a CEBPA-

ER fusion protein. Once C/EBPα is in the nucleus, it accesses regulatory regions of downstream target genes that are 

responsible for myeloid differentiation. 

E2-induced differentiation was observed when the cells were cultured in the presence of interleukin 3 (IL-3) (Figure 

S3A and B)) or G-CSF183 (Figure S3C and D) showing that C/EBPα is a potent inducer of differentiation even at 

proliferative conditions when cells were cultured in the presence of IL-3. A construct expressing the LBD of ERa (ER) 

only (without C/EBPα) was introduced into 32D cells that did not differentiate upon E2 exposure when cultured in the 

presence of IL3 (Figure S3B). In the presence of G-CSF these cells showed the expected neutrophil development 

(Figure S3D). To study requirement of DNA-binding of C/EBPα-ER protein, a mutant was constructed, which carried 

an insertion of 6 amino acids in the bZIP domain of C/EBPα (C/EBPα-mutant-ER). This mutant was identified in a human 

AML patient and was predicted to lack DNA-binding activity27. Morphological analysis revealed that differentiation of 

the C/EBPα-mutant-ER 32D cells was absent when stimulated with IL3 plus E2 (Figure S3A and B). Strongly delayed 

differentiation was observed when cells were stimulated with G-CSF plus E2 (Figure S3C and D). We hypothesized that 

defective differentiation by mutant CEBPA was caused by a lack of ability to bind DNA and to regulate the expression 

of genes critical for myeloid differentiation. We postulate that these genes can be identified using chromatin 

immunoprecipitation (ChIP) and by comparing the binding of C/EBPα-ER versus C/EBPα-mutant-ER in 32D cells. 

Discovery of C/EBPα interacting loci in C/EBPα-ER 32D cells.  

Anti-ER ChIP was carried out for C/EBPα-ER and C/EBPα-mutant-ER 32D clones followed by Affymetrix promoter chip 

hybridization. The immunoprecipitated fragments were analyzed using HAT which resulted in the detection of C/EBPα-

ER binding regions, i.e. loci that interacted with C/EBPα-ER but not with mutant C/EBPα-ER (Table S4) within 529 

unique gene promoters. Among those previously described C/EBPα targets were present, as an example, the binding 

of C/EBPα to the Il6ra82 promoter (Figure 2A). These results were validated using a quantitative ChIP-Q-PCR 

experiment for Il6ra (Figure 2B).  
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Transcription factor binding site analysis revealed that only the CEBP consensus binding site was significantly enriched 

(Table S5, P<1x10-28) in the detected binding regions within the 529 promoters. The detected binding sites were 

uniformly distributed within the upstream sequences (Figure S4). Using this approach we identified several known but 

also many novel putative target genes of C/EBPα (Table S4). 

Differentially expressed genes in CEBPAsilenced leukemias are enriched for C/EBPα target genes.  

We next addressed the question whether among the 689 differentially expressed genes identified in CEBPAsilenced 

leukemias, direct C/EBPα targets were present that were identified by ChIP-on-chip using the C/EBPα-ER 32D model. 

We overlaid the 529 C/EBPα targets found in the 32D model-system (yellow circle in Figure 1A) with the 689 

differentially expressed genes identified in CEBPAsilenced leukemias (green circle and blue circles in Figure 1A) and found 

an overlap of 49 genes (Figure 1A). The chance that two gene sets of this size show an overlap of 49 genes is P=1x10-

7. Of these 49 genes, 25 were downregulated and 24 upregulated in CEBPAsilenced leukemias (P=1.2x10-3 and P=1.6x10-

5 respectively, Table 1). A selection of these genes are depicted in the heat map in Figure 3. These data suggest that 

upon binding to a promoter, C/EBPα may affect the expression of a putative target gene in different ways, i.e. it may 

act as a transcriptional activator or it may function as a repressor of transcription.  

The putative C/EBPα target genes upregulated in CEBPAsilenced leukemias are relevant for T-cell development. 

We hypothesize that among the 24 genes that are upregulated in CEBPAsilenced leukemias and bound by C/EBPα, are 

under normal conditions repressed in myeloid cells upon C/EBPα interaction. We already demonstrated that the 286 

upregulated genes in CEBPAsilenced AMLs were enriched for T-cell associated genes. Pathway analysis for these 24 

upregulated genes in CEBPAsilenced leukemias showed enrichment for pathways involved in T-cell development (Figure 

1C and Table S6). The networks are illustrated in Figure S5A-C. This observation suggests that the transcription factor 

C/EBPα may act as a repressor of genes such as BCL2, CCR9, B3GNT2, CD47, CASP1 or MAP2K4. 

Twenty-five C/EBPα genes bound in the 32D model were absent in CEBPAsilenced human AML but transcribed in other 

myeloid leukemias. Apart from TOB1, these genes appeared not to be associated with T-cell related functions (Figure 

1C, Table S6 and Figure S5D-E). In fact, TOB1 is a gene that encodes an inhibitor of transcription of cytokines and 

cyclins and represses T-cell proliferation.  

T-cell related genes are upregulated in Cebpa knock-out murine bone marrow progenitor cells 

To study whether the regulation of the differentially expressed genes required C/EBPα in normal myeloid progenitors, 

a Cebpa-knock-out (KO) mouse model-system was applied. We purified short-term (ST, n=2) and long-term (LT, n=2) 

hematopoietic stem cell (HSC) from wild-type as well as Cebpa-KO bone marrow as decribed previously184, isolated 

mRNA and carried out microarray hybridizations. We selectively studied the 49 genes (Table 1) and compared the 

mRNA-expression of those genes in ST-HSCs and LT-HSCs. We overlaid the 24 upregulated genes in CEBPAsilenced 

leukemias (Table 1) with the genes that showed a fold-increase of > 1 in separately the KO-LT-HSC and KO-ST-HSC and 
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detected an overlap of 6 genes, including CCR9 and CEBPG (Figure S6A-B). These genes are strongly upregulated in 

the absence of wild-type CEBPA, indicating a putative role for C/EBPα as a repressor in HSCs. For the 25 downregulated 

genes in CEBPAsilenced leukemias (Table 1), we detected downregulation for 11 genes in the Cebpa-KO marrow HSCs, 

among them TOB1 (Figure S6C-D).  

C/EBPα acts synergistically with other transcription factors for T-cell repression 

To reveal transcriptional modules that contribute to the activation of genes, we analyzed the promoter regions of the 

49 genes. The C/EBPα consensus binding sites were detected in the promoter regions of 20/24 and 16/25 upregulated 

and downregulated genes respectively. The promoter regions of the upregulated genes (n=24) revealed 27 

significantly enriched TFBSs for 23 families. Besides the C/EBPα consensus site and sites that are described in literature 

to interact synergistically with wild-type C/EBPα (PU.1185,186, SP1187 and E2F188,189), we also detected 20 other TFBSs 

which are listed in Table S7. Interestingly, for E2F it has been reported that it interacts with CEBPAwt and is involved 

in the downregulation of genes188,189. We furthermore detected E4BP4190 for which is known to be involved in the 

regulation of T-cell interleukins. Transcription factor (TF) interactions are a crucial aspect of the gene regulatory 

system191. Thus the T-cell repressor function of C/EBPα may be performed by synergistically interacting with these 

transcription factors185,186,188,189,192-194.. 

DISCUSSION 

In this study, we investigated the DNA-interaction of exogenous C/EBPα on target loci using CHIP coupled with genome 

wide promoter arrays. We determined C/EBPα interaction in a 32D model and compared the binding of C/EBPα with 

a C-terminal DNA-binding mutant form that was previously found in AML35. Moreover, we demonstrate that 

combining ChIP-on-chip with gene expression data reveals the effects of direct target interactions. More specifically, 

we identified a subset of putative C/EBPα target genes that were differentially expressed in CEBPAsilenced AMLs 

compared to CEBPA expressing AML samples. Importantly, the overlapping list of gene promoters was highly enriched 

for C/EBPα binding sites. In other words, this list may contain genes that are bound by wild-type and not by mutant 

C/EBPα through interaction with “classical” C/EBPα binding sites. It is predicted that differential gene expression 

profiles between CEBPA silenced and other AML samples is at least partially causing the effects. The overlap was highly 

significant, meaning that determining actual binding of C/EBPα to promoters in a murine cell line model, provides 

insight into the effects of C/EBPα in human AML cells. It is important to realize that the use of array-data, such as 

ChIP-on-chip is limited to the promoters defined on the chip. A large number of regulatory regions lie outside the 

promoter regions and sometimes at long distances from the genes targeted by these factors. It will therefore be of 

interest to carry out deep sequencing rather than ChIP hybridizations following chromatin-IP of wild-type versus 

mutant C/EBPα binding in 32D model. Moreover, we compared binding of C/EBPα in mouse models, and it is known 

that there are differences between mouse and human myeloid cells. Our data show that it is possible to identify direct 

targets of transcription factors in leukemia samples. 
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We overlaid the detected direct binding targets of C/EBPα in 32D cells, with the differentially expressed genes in the 

CEBPAsilenced group and identified 49 overlapping genes as putative direct targets. Among these 49 genes, 25 were 

downregulated and 24 were upregulated in the primary CEBPAsilenced AML group. The 25 downregulated genes 

represent putative targets of C/EBPα that are activated under normal conditions. The 24 upregulated genes are highly 

enriched for pathways in T-cell development and are repressed in wild-type CEBPA expressing cells and activated 

when CEBPA was silenced. This suggests that the transcription factor C/EBPα may also acts as a repressor of gene 

transcription. Transcription factor binding site analysis showed that 20 of the 24 upregulated genes contain the CEBP 

consensus sequence. Moreover, other known transcription factor binding sites, e.g. PU.1185,186, SP1187 and E2F188,189 

were found as well in the promoter regions (all located within 2kb). Transcription factors recognizing these binding 

sites were previously identified to interact with C/EBPα. Interestingly, E2F has been reported to be involved in the 

downregulation of genes188,189. In fact, it was recently shown that CEBPA represses Cebpg expression by affecting E2F1 

transcriptional activity184. In luciferase reporter assays using the C/EBP proximal promoter it was demonstrated that 

both C/EBPα isoforms, i.e. the p30 and the p42 isoform can repress C/EBP transactivation. Our studies are also in line 

with our previous report, showing that multiple T-cell related genes, e.g. CD7 or LCK are downregulated by C/EBPα195. 

Similar to what we have demonstrated here, these genes were strongly upregulated in mouse bone marrow LSK cells 

in which Cebpa was knocked out. Upon reintroduction of Cebpa, the expression of these genes rapidly declined195. 

Taken together, these findings suggest that C/EBPα can not only act as an activator, but also as a repressor of 

transcription. Whether C/EBPα functions as an activator or a repressor is most likely determined by distinct complexes 

containing additional transcriptional repressors and activators. Both functions seem essential for a proper balance 

between proliferation and differentiation of primitive progenitor cells in the bone marrow. 
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FIGURE LEGENDS 

 

Figure 1. Overview CEBPAsilenced targets genes and enriched pathways. (A) Genes that are bound by wild-type C/EBPα in 

the 32D model-system (n=529, yellow circle), and that overlap with the CEBPAsilenced leukemias when compared to 
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normal CD34+ and versus the other AMLs. The blue circle indicates the upregulated (n=286) genes from which 24 

genes are bound by C/EBPα in the proximal promoter region. The green circle indicates the downregulated (n=403) 

genes from which 25 genes are bound by C/EBPα in the proximal promoter region. (B) Graphical representation of 

enriched pathways (shown in bar graphs) that overlapped between the 286 upregulated and 403 downregulated 

genes. (C) Graphical representation of the enriched categories for the 24 upregulated and 25 downregulated genes 

that were bound by C/EBPα in the 32D model-system. 

 

Figure 2. C/EBPα binding for Il6ra. (A) Affymetrix genome browser illustrates relative probe intensity signal with vertical 

bars of three C/EBPα-ER clones compared to C/EBPα-MUTANT-ER. The red rectangle illustrate the significantly 

detected binding region in the promoter region of Il6ra in all C/EBPα-ER experiments. (B) Bar plots depicts the binding 

of C/EBPα-ER and ER in three experiments using a quantitative ChIP-Q-PCR. 

 

Figure 3. Aberrant mRNA expression levels of C/EBPα target genes in the CEBPAsilenced group. Pairwise correlations 

between the 506 AML cases (A). The cells in the visualization are colored by Pearson correlations values, depicting 
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higher positive (red) or negative (blue) correlations, as indicated by the scale bar. The cytogenetical groups; inv(16), 

t(8;21), t(15;17), together with CEBPAdm and CEBPAsilenced cases are depicted on the diagonal with a red colored bar. 

For 9 upregulated and 11 downregulated genes we illustrate the expression profile on the diagonal as black bars that 

were detected as significantly differential expressed in human AML and bound by C/EBPα in the 32D model-system.  

 

Table 1. Candidate target genes for CEBPAsilenced, prior the scenarios of the 32D model-system. Human gene-symbols 

are listed that overlapped with the candidate C/EBPα target genes from the 32D model and were called differential 

expressed for C/EBPαsilenced group. The P-value indicates the probability of detecting this overlap by chance. Bolded 

gene-symbols with an asterisk are previously reported in literature to interact with C/EBPα. 

  

(689 genes)

ACSL1, ARSB, ATP6V0A1, COL4A3BP, CTSB, 

DEGS1, EVI2B, FOSL2, FYB, GOSR1, H2AFJ, 

HIPK1, HSP90B1, IRAK3, LIN7C, MBTD1, MSRA, 

MYCT1, PLA2G4A, PLEK, PPM1A, PXK, RANBP9, 

STX11, TOB1

Upregulated Downregulated

Table 1. Candidate target genes for CEBPA
silen c ed

, pr ior  the scenarios of the 32D model  system

Group

CEBPA s ilenced

(49 genes, P =1x10-7)

Overlap with wild-type C/EBPα in 32D cells (n=529)

ACAD8, ATP6V1B2, B3GNT2, B4GALT1, 

BCL2*, CASP1, CCR9*, CD47, CEBPG*, 

CEPT1, FBXW2, GOPC, HMGCR, MAP2K4, 

MRPL41, NIN, NMT1, OGT, SEPX1, 

SLC7A11, SSBP2, STK38, UBTD1, YPEL1 
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SUPPORTING MATERIAL 

C/EBPα-ER cells differentiate upon E2 treatment while C/EBPα-mutant-ER cells show impaired differentiation 

Stable 32D clones expressing a fusion protein of murine C/EBPα and the ligand-binding domain (LBD) of the human 

estrogen receptor alpha (ERá) (C/EBPα-ER) were generated. 32D cells proliferate when stimulated with IL-3 and 

differentiate into granulocytes when induced by G-CSF183. Upon addition of E2, C/EBPα-ER cells morphologically 

differentiated into mature granulocytes even in the presence of IL-3 (Figure S3A), while their proliferation rate 

dropped (Figure S3B). This effect appeared even more pronounced when the cells were treated with G-CSF plus E2. 

(Figure S3, panel C-D). As expected, control cells only expressing the LBD of ERá (ER) did not show a response to E2 

(Figure S3B and data not shown). 

32D cells expressing a mutant C/EBPα-ER fusion with an insertion of 6 amino acids in the bZIP domain (C/EBPα-mutant-

ER) as previously found in a human AML patient36 showed less pronounced inhibition of proliferation upon treatment 

with E2 in the presence of IL3. Morphological differentiation of these cells could hardly be detected under IL3 plus E2 

conditions (Figure S3A-B). In the presence of G-CSF, C/EBPα-mutant-ER cells demonstrated delayed differentiation 

with the suggestion of a partial block (Figure S3C). 

Candidate C/EBPα targets by using ChIP-on-chip promoter arrays 

For the detection of candidate target genes that are bound by wild-type protein C/EBPα, we used HAT182 and 

compared C/EBPα-ER clones (n=3) to C/EBPα-mutant-ER clones (n=2). The C/EBPα-mutant-ER clones cannot bind to 

the DNA compared to the ER clones, and eliminates DNA-binding effects caused by ER. In any of the wild-type C/EBPα-

ER clones versus C/EBPα-mutant-ER, we detected 2732 statistically significant binding regions sized between 104 and 

9928 nucleotides (median 823nt); 80% (2185) of these binding regions were detected in two or more clones whereas 

the 2732 binding regions could be mapped to 964 unique genes within 2Kb of the transcriptional-start-site. 

To investigate the enrichment of transcription factor binding motifs for the detected binding regions, we utilized F-

MATCH163,164. This resulted in the detection of six highly enriched TFBSs (P<1x10-28) from which five are known to be 

C/EBPα consensus sites. Furthermore, TFBSs were four times more observed than in the background set (fold-increase 

> 4) (Table S5). This indicates high specificity of C/EBPα binding in the detected regions. 

Among the mapped genes we observed genes that have previously been reported to be regulated by C/EBPα, such as 

Il6ra82, C352, Hp52, Mpo196, Myc197 and Sfpi1198. The gene encoding the IL-6 receptor alpha has previously been 

identified as a critical downstream target of C/EBPα. These latter findings give confidence, that among the putative 

novel C/EBPα target genes, critical players may be hidden, important in neutrophilic development and consequently 

in myeloid transformation. 

Plasmids 
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A pBabe-Cebpa-ER fusion construct and pBabe-ER construct were provided by Dr. Daniel Tenen (Harvard Institutes of 

Medicine, Boston, MA, USA). The Cebpa-ER fusion gene was re-cloned into the pLNCX-neo vector using polymerase 

chain reaction (PCR) amplification with primers that included appropriate restriction sites, i.e. HpaI and ClaI. Primer 

sequences were: fw 5’-GTA CGT TAA CAG GAA TTC GCG CCA CCA TGG A-3’ and rev 5’-AGG AAT CGA TCT CTC AGA CTG 

TGG CAG GGA A-3’. A mutant construct was generated using the QuikChange site-directed mutagenesis kit 

(Stratagene, La Jolla, CA, USA), using the following oligos (insertion mutation is underlined): 5’-GAT AAA GCC AAA CAA 

CGT AAT GTG GAC AAG CAG CGC AAC GTG GAG-3’ (sense) and 5’-CTC CAC GTT GCG CTG CTT GTC CAC ATT ACG TTG 

TTT GGC TTT ATC-3’ (anti-sense). A pLNCX-ER construct was generated with primers fw 5’-TAT GGT TAA CAT CTG CTG 

GAG ACA TGA GAG CT-3’ and the reverse primer used for the Cebpa-ER construct. The cloned constructs and site of 

inserted mutation were nucleotide-sequenced. 

Figure Legends 
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Figure S1. Enriched functional pathways for the 286 upregulated and 403 downregulated genes that are detected in the 

CEBPAsilenced cases. Graphical representation of the functional pathways (shown in bar graphs) that are significantly 

enriched in (A) 286 upregulated genes, and (B) 403 downregulated genes for the CEBPAsilenced AMLs. 
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Figure S2. Enriched canonical pathways for the 286 upregulated and 403 downregulated genes that are detected in the 

CEBPAsilenced cases. Graphical representation of the canonical pathways (shown in bar graphs) that are significantly 

enriched in (A) 286 upregulated genes, and (B) 403 downregulated genes for the CEBPAsilenced AMLs. 

 

Figure S3. Differentiation of C/EBPα among IL3 conditions. (A) Representative cytospins of C/EBPα-ER cells (clone C-

E.4) and C/EBPα-mutant-ER cells (clone Cmut-E.9) in the absence (-) and presence (+) of E2 for 3 or 7 days. The cells 

were cultured in the presence of IL3. (B) Proliferation curves of C/EBPα-ER cells (C/EBPα) and C/EBPα-mutant-ER cells 
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(C/EBPα-mutant) stimulated with IL3 alone (IL3 -) or IL3 in combination with E2 (IL3 +est). The graph represents the 

average and standard deviations for the individual clones for the cell types. (C) Representative cytospins of C/EBPα-

ER cells (clone C-E.4) and C/EBPα-mutant-ER cells (clone Cmut-E.9) in the absence (-) and presence (+) of E2 for 3 or 

7 days. The cells were cultured in the presence of G-CSF. (D) Proliferation curves of C/EBPα-ER cells (C/EBPα) and 

C/EBPα-mutant-ER cells (EBPα-mutant) stimulated with G-CSF alone (G-CSF -) or IL3 in combination with E2 (G-CSF 

+est). The graph represents the average and standard deviations for the individual clones for each of the cell types. 

 

Figure S4. Distribution of the detected CEBP consensus sites. Graphical representation of the genomic distance (base 

pairs; bp) for the CEBP consensus sites that are detected in the proximal promoter regions of the 529 genes. Dark 

blue is the average number of sites detected per position whereas light blue the actual number of sites per position. 
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Figure S5. Enriched networks for the 24 upregulated and 25 downregulated genes that are detected in the CEBPAsilenced 

cases. Illustration of networks that are enriched using IPA for the 24 upregulated genes (panel A, B and C), and 25 

downregulated genes (Panel D and E). The genes are dark grey coloured in the networks and are bound by wild-type 

C/EBPα in the 32D model system and differentially expressed in the CEBPAsilenced group. 
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Figure S6. Validation with LT-HST and ST-HST Cebpa-KO mouse and wild-type 32D C/EBPα-ER cell line. The 24 

upregulated genes among the CEBPAsilenced leukemias are overlaid with (A) the genes that showed a fold-change > 1 

in the ST-HSC wild-type versus ST-HSC knockout expression levels and (B) the genes that showed a fold-change > 1 in 

the LT-HSC wild-type versus LT-HSC knockout expression levels. The red-circled genes illustrates the overlap between 

A and B. The 25 downregulated genes among the CEBPA silenced leukemias are overlaid with (C) the genes that 

showed a fold-change < 1 in the ST-HSC wild-type versus ST-HSC knockout expression levels and (B) the genes that 

showed a fold-change < 1 in the LT-HSC wild-type versus LT-HSC knockout expression levels. The blue-circled genes 

illustrates the overlap between C and D. 

 

Pathways detected in: Function Annotation Regulation P -value Genes Nr. of genes

DOWN 9.72E-05 BCL2L11,BCL3,CD40,CD74,CDK2,CEBPA,CHEK1,CST3,E2F1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,JUNB,MBD2,MCL1,MYLK,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B33

UP 7.45E-07 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,FAS,GRAP2,ITGA4,LCK,MAP2K4,NOTCH1,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP7030

DOWN 2.05E-04 BEX2,CD40,CD74,CITED4,CYTIP,DACH1,E2F1,FOXO1,GFI1,HBEGF,HSP90B1,IL18,JUNB,LTBR,NFATC2,NFE2L2,NR4A2,PLA2G4A,PPP3CA,PRKAR2A,PRKCD,PTBP1,PTGS2,RIPK2,SIRPA,SKI,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,YWHAQ32

UP 1.28E-04 ANGPT2,APC,ATM,BCL2,CBL,DLX1,DUSP1,FAS,JAK2,JARID2,LCK,MACF1,MAP2K4,MLX,MTF1,MYCN,NOTCH1,PRKCQ,SART3,SH2D1A,STAT5B,TCF7,TSC1,ZAP70,ZBTB1625

DOWN 8.24E-05 ADRB2,APLP2,ATP2B1,BCL2L11,BLMH,CD40,CDH2,CDK2,CEBPD,CHEK1,CTSB,DACH1,FOXO1,GFI1,GNA11,GNAS,HBEGF,HIPK1,HMGB1,HS6ST1,IFNGR1,IL18,IRAK3,IRS2,KLF4,KLF9,LTBR,MAFF,MCL1,MME,MSH6,NASP,NFE2L2,NFIC,NR4A2,PDGFC,PELI1,PRKCI,PTGS2,RAG1,SIN3A,SKI,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOP2B,TREM1,VAC1449

UP 7.17E-04 ABL2,ADCYAP1,ANGPT2,APAF1,APC,ATF2,ATM,BCL2,BUB3,CASP1,CBL,CEBPG,CUL7,CYBB,DLX3,DUSP1,EPHB3,FAS,GPX1,HMGCR,ITGA4,JAK2,LIMS2,MAP2K4,MYCN,NFATC4,PLEC,PRF1,SACM1L,SLC5A3,SOCS7,STAT5B,TIA1,TSC134

DOWN 4.92E-05 BCL2L11,BCL3,BST1,CAST,CD40,CD74,CDK2,CEBPA,CHEK1,CSF1R,CST3,E2F1,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,JUNB,LTBR,MBD2,MCL1,MYLK,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,ROGDI,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B39

UP 7.76E-07 ADCYAP1,ANGPT2,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,FAS,GRAP2,ITGA4,JAK2,LCK,MAP2K4,NFYA,NOTCH1,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP70,ZBTB1634

DOWN 1.92E-04 ANXA5,BASP1,BCL2L11,BCL3,BST1,CAST,CD40,CD74,CDH2,CDK2,CEBPA,CHEK1,COL4A3BP,CSF1R,CSNK2A2,CST3,CTNNA1,CTSB,E2F1,ELAVL1,FOSL2,FOXO1,FZD8,GFI1,GNA11,HBEGF,HEXB,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,IRS2,JAG1,JUNB,LTBR,MBD2,MCL1,MITF,MYLK,NFATC2,NFE2L2,NR4A2,PARVB,PLAUR,PLD1,PRKCI,PTBP1,PTGS2,RAG1,RHOB,RIPK2,RNF17,ROGDI,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,VEZF1,VIM63

UP 3.71E-05 ABL2,ADCYAP1,ANGPT2,APAF1,APC,ATM,ATP7A,B4GALT1,BCL11B,BCL2,CASP1,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,CLDN5,DENND2D,DUSP1,EPHB3,EPHB6,FAS,GPX1,GRAP2,HTRA2,ITGA4,ITGB1BP1,JAK2,LCK,MAP2K4,NFATC4,NFYA,NOTCH1,PRF1,PRKCQ,RAD52,SETDB1,SH2D1A,SS18,STAT5B,TCF7,TOX,TRAT1,TSC1,TSPAN7,ZAP70,ZBTB1649

DOWN 1.39E-05 BCL2L11,BCL3,BST1,CAST,CD40,CD74,CDK2,CEBPA,CHEK1,CSF1R,CST3,E2F1,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,JUNB,LTBR,MBD2,MCL1,MYLK,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B38

UP 8.20E-07 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,FAS,GRAP2,ITGA4,JAK2,LCK,MAP2K4,NFYA,NOTCH1,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP7032

DOWN 8.24E-05 BCL2L11,BCL3,BST1,CAST,CD40,CD74,CDK2,CEBPA,CEBPD,CHEK1,CSF1R,CST3,E2F1,ELANE,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JAG1,JUNB,KLF4,LTBR,MBD2,MCL1,MYCT1,MYLK,NDFIP1,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,ROGDI,SFXN1,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM148

UP 7.59E-06 ADCYAP1,ANGPT2,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CBX2,CCR9,CD247,CD3D,CD3G,CD47,CD7,CLCF1,EPHB6,FAS,GRAP2,ITGA4,JAK2,LCK,MAP2K4,MYCN,NFYA,NOTCH1,OGT,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP70,ZBTB1639

DOWN 2.94E-05 BCL2L11,BCL3,BST1,CAST,CD40,CD74,CDK2,CEBPA,CEBPD,CHEK1,CSF1R,CST3,E2F1,ELANE,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JAG1,JUNB,KLF4,LTBR,MBD2,MCL1,MYLK,NDFIP1,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM145

UP 8.45E-07 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CBX2,CCR9,CD247,CD3D,CD3G,CD47,CD7,CLCF1,EPHB6,FAS,GRAP2,ITGA4,JAK2,LCK,MAP2K4,MYCN,NFYA,NOTCH1,OGT,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP70,ZBTB1638

DOWN 7.85E-05 BCL2L11,BCL3,BST1,CD40,CD74,CDK2,CEBPA,CHEK1,CST3,E2F1,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JUNB,LTBR,MBD2,MCL1,MYLK,NDFIP1,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B38

UP 5.55E-07 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CBX2,CCR9,CD247,CD3D,CD3G,CD47,CD7,CLCF1,EPHB6,FAS,GRAP2,ITGA4,LCK,MAP2K4,MYCN,NOTCH1,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP7034

DOWN 4.26E-04 BCL3,CD40,CD74,CEBPA,FZD8,GFI1,HSP90B1,ID1,IFNGR1,IL18,JUNB,MBD2,MYLK,NFATC2,PRKCI,PTGS2,RAG1,RIPK2,TLR2,TNFSF13B 20

UP 2.85E-04 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,ITGA4,LCK,NOTCH1,PRKCQ,SH2D1A,STAT5B,TCF7,TOX,ZAP70 16

DOWN 1.97E-04 BCL3,CD40,CD74,CEBPA,CEBPD,CSF1R,FZD8,GFI1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JAG1,JUNB,KLF4,LTBR,MBD2,MYLK,NDFIP1,NFATC2,PRKCI,PTGS2,RAG1,RIPK2,TLR2,TLR4,TNFSF13B,TREM130

UP 9.80E-06 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CD3D,CD47,CLCF1,FAS,ITGA4,JAK2,LCK,MYCN,NFYA,NOTCH1,OGT,PRKCQ,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP70,ZBTB1626

DOWN 3.75E-04 BCL3,CD40,CD74,CEBPA,FZD8,GFI1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JUNB,MBD2,MYLK,NDFIP1,NFATC2,PRKCI,PTGS2,RAG1,RIPK2,TLR2,TLR4,TNFSF13B24

UP 2.74E-05 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CD3D,CLCF1,FAS,ITGA4,LCK,MYCN,NOTCH1,PRKCQ,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP70 21

DOWN 1.15E-06 ACTG1,ACTN1,ADAM15,BCL2L11,BRF1,CAST,CD40,CDK2,CEBPA,CEBPD,CGREF1,CHEK1,CHFR,CREG1,CSF1R,CTSB,DACH1,DEGS1,E2F1,ELANE,EMILIN2,EREG,FLOT1,FOXO1,GFI1,GFM1,GGA2,GLA,GMEB1,GNG7,GRN,HBEGF,HEXB,HMGB1,ID1,IL15RA,IL18,IRS2,JAG1,JUNB,KIF13A,KLF4,LDLRAP1,LMNA,LTBR,MAFF,MBD2,MCL1,MITF,MTHFD1,MXD1,MYCT1,MYST4,NAGA,NFATC2,NR4A2,NUDCD3,PARVB,PLA2G4A,PLAUR,PLD1,PPM1A,PRG2,PRKAR2B,PRKCD,PRKCI,PRTN3,PTGS2,RGS16,RHOB,RIPK2,SERPINE2,SF3A2,SF3A3,SIRPA,SKI,SLC30A1,TCF4,THEM4,TNFRSF1B,TNFSF13B,TOB1,YWHAQ83

UP 5.47E-04 ABL2,AIMP1,APBA3,APC,ARL6IP5,ATF2,ATM,BCL2,CASP1,CBL,CBX2,CIRBP,COL2A1,CUL7,CYBA,DGKZ,DUSP1,EPHB3,EPHB6,ERCC3,FAS,FDXR,GPX1,HMGCR,JAK2,JARID2,MCAM,MYCN,NFATC4,NOTCH1,PFDN5,PLEC,PLIN3,PNN,POLD4,PRF1,RASSF1,RBM5,SART3,SCGB3A1,SKP2,SLC12A6,SLC7A11,SOS1,SPHK2,SS18,STARD10,STAT5B,TOX,TSC1,TTLL4,ZAP70,ZBTB1653

DOWN 9.49E-06 ANXA5,BCL2L11,BCL3,BST1,CAST,CD40,CD74,CDK2,CEBPA,CEBPD,CHEK1,CSF1R,CST3,E2F1,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JAG1,JUNB,KLF4,LTBR,MBD2,MCL1,MYLK,NDFIP1,NFATC2,NFE2L2,PLAUR,PLEK,PRG2,PRKCI,PTGS2,RAG1,RIPK2,ROGDI,SERPINE2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM150

UP 9.73E-06 ADCYAP1,ANGPT2,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,CLCF1,DUSP1,FAS,GRAP2,ITGA4,JAK2,LCK,MAP2K4,MYCN,NFYA,NOTCH1,OGT,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP70,ZBTB1638

DOWN 1.55E-05 BCL2L11,BCL3,BST1,CAST,CD40,CD74,CDK2,CEBPA,CEBPD,CHEK1,CSF1R,CST3,E2F1,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JAG1,JUNB,KLF4,LTBR,MBD2,MCL1,MYLK,NDFIP1,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,ROGDI,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM145

UP 1.23E-06 ADCYAP1,ANGPT2,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,CLCF1,FAS,GRAP2,ITGA4,JAK2,LCK,MAP2K4,MYCN,NFYA,NOTCH1,OGT,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP70,ZBTB1637

DOWN 8.57E-04 ABCG1,ADRB2,CD40,CD74,CDK2,CTSZ,FYB,GFI1,HMGB1,HSP90B1,IFNGR1,IL18,IRS2,JAG1,MVP,NDFIP1,NFATC2,PTGS2,RAG1,RIPK2,SIRPA,TLR2,TLR4,TNFRSF1B,TNFSF13B25

UP 1.68E-05 ADCYAP1,ATM,B3GNT2,BCL2,CBL,CD247,CD3G,CD47,DUSP1,EPHB6,FAS,GCNT1,GRAP2,LCK,MAP2K4,NOTCH1,PRKCQ,SH2D1A,SPHK2,STAT5B,TCF7,TOX,ZAP7023

DOWN 5.68E-05 ABCG1,ADRB2,BCL2L11,CD40,CD74,CDK2,CTSZ,FYB,GFI1,HMGB1,HSP90B1,IFNGR1,IL13RA1,IL15RA,IL18,IRS2,JAG1,JUNB,KLF4,KLF9,MVP,NDFIP1,NFATC2,PELI1,PRKCD,PTGS2,RAG1,RIPK2,SIRPA,TLR2,TLR4,TNFRSF1B,TNFSF13B33

UP 3.96E-06 ADCYAP1,ATM,B3GNT2,BCL2,CBL,CD247,CD3G,CD47,CLCF1,DUSP1,EPHB6,FAS,GCNT1,GRAP,GRAP2,LCK,MAP2K4,MYCN,NOTCH1,PCYT1A,PRKCQ,SH2D1A,SPHK2,STAT5B,TCF7,TOX,ZAP70,ZBTB1628

DOWN 5.55E-05 APLP2,ARL4A,BCL2L11,BHLHE40,BST1,CD40,CDK2,CEBPA,CSF1R,CTSB,CYTIP,DNMT1,E2F1,FOSL2,FOXO1,GFI1,GNG7,HBEGF,HEXB,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,IRS2,JAG1,JUNB,KIF13A,KLF4,LTBR,MXD1,NELF,NFATC2,NFE2L2,NR4A2,PCYT1B,PDGFC,PLAUR,PPP3CA,PRKCD,PROK2,PRTN3,PTGS2,RAG1,SIRPA,SKI,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOB1,ZBTB7A54

UP 3.66E-04 ADCYAP1,ANGPT2,APAF1,ATF2,ATM,ATRX,BCL2,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,CYBB,DGKZ,DLX1,DUSP1,FAS,GCNT1,GPX1,GRAP2,JAK2,JARID2,LCK,MAP2K4,MECP2,NOTCH1,PRF1,SH2D1A,SIGIRR,SKP2,STAT5B,TCF7,TOX,TSC1,ZAP70,ZBTB1638

DOWN 4.36E-05 BCL2L11,BST1,CD40,CEBPA,CSF1R,CYTIP,DNMT1,E2F1,GFI1,HBEGF,HEXB,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,KLF4,LTBR,MXD1,NFATC2,PDGFC,PRKCD,PROK2,PRTN3,RAG1,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B32

UP 6.03E-04 ATM,BCL2,CCR9,CD247,CD3D,CD3G,CD47,CD7,FAS,GCNT1,GRAP2,JAK2,JARID2,LCK,NOTCH1,PRF1,SIGIRR,STAT5B,TCF7,TOX,ZAP70,ZBTB16 22

DOWN 4.75E-04 BCL2L11,BST1,CD40,CYTIP,DNMT1,E2F1,GFI1,HEXB,HSP90B1,ID1,IFNGR1,IL15RA,IL18,KLF4,LTBR,NFATC2,PRKCD,PROK2,PRTN3,RAG1,TCF4,TLR2,TNFRSF1B,TNFSF13B24

UP 3.01E-04 ATM,BCL2,CCR9,CD247,CD3D,CD3G,CD7,FAS,GCNT1,GRAP2,JAK2,JARID2,LCK,NOTCH1,PRF1,STAT5B,TCF7,TOX,ZAP70 19

developmental process of leukocytes

development of blood cells

development of cells

development of leukocytes

developmental process of blood cells

T cell development

activation of synthetic promoter

death of animal

growth of cells

hematological process

hematopoiesis

proliferation of T lymphocytes

Both upregulated and downregulated 

genes

developmental process of lymphocytes

differentiation of T lymphocytes

differentiation of leukocytes

differentiation of lymphocytes

proliferation of lymphocytes

quantity of cells

quantity of leukocytes

quantity of mononuclear leukocytes
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activation of NFAT response element UP 5.90E-04 CBL,GRAP2,NOTCH1,ZAP70 4

activation of T lymphocytes UP 6.48E-04 BCL2,CD247,CD3D,CD3G,CD47,CD7,DUSP1,FAS,LCK,PRF1,PRKCQ,SLA2,SPHK2,STAT5B 14

adhesion of melanoma cells UP 4.53E-04 CD47,ITGA4,MCAM 3

apoptosis of embryonic stem cells UP 5.90E-04 APAF1,BCL2,FAS,MAP2K4 4

apoptosis of fibroblasts UP 5.00E-04 ABL2,APAF1,ATF2,BCL2,CASP1,DUSP1,FAS,MAP2K4,NOTCH1,SKP2,SPHK2 11

apoptosis of granule cells UP 9.14E-04 ADCYAP1,ATF2,BCL2,FAS,NFATC4 5

apoptosis of lymphocytes UP 6.71E-04 ADCYAP1,AIMP1,ATM,BCL2,CASP1,CD247,CD47,FAS,GRAP2,LCK,MAP2K4,PRF1,STAT5B,TCF7 14

apoptosis of neurons UP 1.80E-04 ADCYAP1,APAF1,ATF2,ATM,ATRX,BCL2,CASP1,CYBA,DLX1,DUSP1,FAS,GPX1,MAP2K4,MECP2,MYCN,NFATC4 16

apoptosis of stem cells UP 3.36E-04 APAF1,ATM,BCL2,FAS,MAP2K4 5

apoptosis of T lymphocytes UP 2.63E-04 ADCYAP1,ATM,BCL2,CASP1,CD247,CD47,FAS,GRAP2,LCK,MAP2K4,PRF1,STAT5B,TCF7 13

arrest in development of T lymphocytes UP 4.53E-04 CBL,CD3D,LCK 3

cell death of lymphocytes UP 3.38E-04 ADCYAP1,AIMP1,APAF1,ATM,BCL2,CASP1,CD247,CD47,CD7,FAS,GRAP2,LCK,MAP2K4,PRF1,STAT5B,TCF7 16

cell death of T lymphocytes UP 9.70E-05 ADCYAP1,APAF1,ATM,BCL2,CASP1,CD247,CD47,CD7,FAS,GRAP2,LCK,MAP2K4,PRF1,STAT5B,TCF7 15

development of alpha-beta T lymphocytes UP 1.12E-04 CD3G,LCK,NOTCH1 3

development of gamma-delta T lymphocytes UP 5.69E-05 CD3D,CD3G,NOTCH1 3

development of natural killer T lymphocytes UP 8.66E-04 NOTCH1,PRKCQ,SH2D1A 3

development of thymocytes UP 1.65E-04 BCL2,CCR9,CD3D,CD3G,TCF7,TRAT1,ZAP70 7

developmental process of alpha-beta T lymphocytes UP 2.56E-06 BCL11B,CD3G,LCK,NOTCH1,TCF7,ZAP70 6

developmental process of gamma-delta T lymphocytes UP 9.62E-06 CD3D,CD3G,LCK,NOTCH1,STAT5B 5

developmental process of T lymphocytes UP 1.64E-07 ADCYAP1,APAF1,APC,ATM,ATP7A,BCL11B,BCL2,CASP1,CBL,CBX2,CCR9,CD247,CD3D,CD3G,CD47,CD7,EPHB6,FAS,GRAP2,ITGA4,LCK,MAP2K4,NOTCH1,PRF1,PRKCQ,RAD52,SH2D1A,STAT5B,TCF7,TOX,TRAT1,ZAP7032

formation of reactive oxygen species UP 7.28E-04 CYBA,CYP2E1,FAS,JAK2,NCF4 5

interphase of fibroblasts UP 7.95E-04 ATF2,ATM,CBX2,CD247,MYCN,SKP2 6

killing of T lymphocytes UP 7.05E-04 CD47,FAS,PRF1,SH2D1A 4

memory UP 9.51E-04 ABL2,ADCYAP1,BCL2,CASP1,CD47,CYBB,MECP2,NOTCH1,SIGIRR 9

mobilization of Ca2+ UP 2.87E-04 ADCYAP1,CBL,CD247,CD3D,CD3G,LCK,PRKCQ,SPHK2,TRAT1,ZAP70 10

modification of protein UP 3.33E-05 ABL2,ALG9,ATM,B3GNT2,B4GALT1,BCL2,CAND1,CASP1,CBL,CD247,CD47,CD7,CYBB,DUSP1,EPHB6,ERCC3,FAS,FBXW2,GCNT1,GPX1,JAK2,KLHL9,LCK,MAP2K4,MAPK15,NMT1,OGT,PPIL2,PRKCQ,RASSF1,SEPX1,SH2D1A,SKP2,SMURF2,SOCS7,STK38,STT3B,TBCD,TSC1,UBR1,UBR2,ZAP7042

moiety attachment of protein UP 2.47E-06 ABL2,ALG9,ATM,B3GNT2,B4GALT1,BCL2,CAND1,CBL,CD247,CD47,CD7,DUSP1,EPHB6,ERCC3,FAS,FBXW2,GCNT1,GPX1,JAK2,KLHL9,LCK,MAP2K4,MAPK15,NMT1,OGT,PPIL2,PRKCQ,RASSF1,SH2D1A,SKP2,SMURF2,SOCS7,STK38,STT3B,TSC1,UBR1,UBR2,ZAP7038

necrosis of leukocytes UP 3.06E-04 BCL2,CASP1,FAS 3

production of reactive oxygen species UP 3.26E-04 ADCYAP1,ANGPT2,BCL2,CD47,CYBB,CYP2E1,FAS,FDXR,MAP2K4,PRF1,PRKCQ,ZAP70 12

proliferation of blood cells UP 1.34E-05 ADCYAP1,ATM,B3GNT2,BCL2,CBL,CD247,CD3G,CD47,CLCF1,DUSP1,EPHB6,FAS,GCNT1,GRAP,GRAP2,JAK2,LCK,MAP2K4,MYCN,NOTCH1,PCYT1A,PRKCQ,SH2D1A,SPHK2,STAT5B,TCF7,TOX,ZAP70,ZBTB1629

quantity of blood cells UP 8.79E-04 ATM,BCL2,CBL,CCR9,CD247,CD3D,CD3G,CD47,CD7,FAS,GCNT1,GRAP2,JAK2,JARID2,LCK,NOTCH1,PRF1,SIGIRR,STAT5B,TCF7,TOX,ZAP70,ZBTB1623

quantity of lymphocytes UP 4.82E-04 ATM,BCL2,CCR9,CD247,CD3D,CD3G,CD7,FAS,GCNT1,GRAP2,JAK2,LCK,NOTCH1,PRF1,STAT5B,TCF7,TOX,ZAP70 18

quantity of neurons UP 4.15E-04 ADCYAP1,ANGPT2,APAF1,ATM,BCL2,CYBB,DLX1,DUSP1,GPX1,MECP2,NOTCH1 11

quantity of T lymphocytes UP 2.16E-04 ATM,BCL2,CCR9,CD247,CD3D,CD3G,CD7,FAS,GRAP2,JAK2,LCK,NOTCH1,STAT5B,TOX,ZAP70 15

quantity of thymocytes UP 3.95E-04 ATM,CCR9,CD247,FAS,GRAP2,LCK,NOTCH1,TOX 8

re-entry into cell division process of fibroblasts UP 8.66E-04 ATM,BCL2,MYCN 3

survival of T lymphocytes UP 9.26E-04 ADCYAP1,BCL2,FAS,NOTCH1,PRKCQ,STAT5B,TCF7 7

synthesis of sphingolipid UP 5.01E-04 ADCYAP1,B3GALT4,B4GALT1,B4GALT6,ELOVL1,FAS 6

transmembrane potential of mitochondria UP 2.53E-04 APAF1,ARID1A,BCL2,CD47,FAS,LCK,MAP2K4,MYCN,PRF1,TRIB2,ZBTB16 11

turnover of phosphatidylinositol UP 8.34E-04 ADCYAP1,CD247,CD3D,CD3G 4

tyrosine phosphorylation of protein UP 5.73E-04 ABL2,CBL,CD247,CD47,CD7,DUSP1,EPHB6,FAS,LCK,SH2D1A,ZAP70 11

ubiquitination of protein UP 9.65E-05 BCL2,CAND1,CBL,FBXW2,KLHL9,MAPK15,PPIL2,RASSF1,SKP2,SMURF2,SOCS7,TSC1,UBR1,UBR2 14

Upregulated genes

DNA damage checkpoint of cells DOWN 5.96E-04 CEBPA,CHEK1,PRKCD 3

activation of dendritic cells DOWN 6.73E-04 CD40,HMGB1,HSP90B1,IL18,LTBR,TLR2,TLR4,TNFRSF1B 8

activation of phagocytes DOWN 9.31E-05 ADAM9,CD40,CSF1R,ELANE,FPR1,HMGB1,HSP90B1,IL18,KLF4,LTBR,NDRG1,PRG2,PRTN3,PTGS2,S100A10,TLR2,TLR4,TNFRSF1B,TREM1 19

activation of polysaccharide DOWN 9.36E-04 HMGB1,HTATIP2,TLR4 3

adhesion of eukaryotic cells DOWN 4.52E-04 ADAM15,ADAM9,ADRB2,ANXA5,APLP2,CDH2,CTNNA1,CTSZ,CYTIP,E2F1,ELANE,FUT4,FYB,GFI1,HBEGF,HMGB1,IFNGR1,IL18,JAG1,LTBR,NAGA,NID1,PARVB,PLAUR,PLD1,RHOB,SIRPA,TLR2,TLR429

apoptosis DOWN 4.87E-07 ABCG1,ADAM15,ADRB2,ANXA5,ARHGEF12,ATP1A1,BCL2L11,BCL3,BEX2,BHLHE40,BRF1,CAST,CD40,CD74,CDH2,CDK2,CEBPA,CEBPD,CHEK1,CSDA,CSF1R,CSNK2A2,CST3,CTBP2,CTNNA1,CTSB,DACH1,DEGS1,DNAJC15,DNMT1,DVL2,E2F1,ELAVL1,EMILIN2,FOXO1,GFI1,GMEB1,GNAS,GRN,HBEGF,HIPK1,HMGB1,HTATIP2,ID1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,JAG1,KLF4,LTBR,MCL1,MITF,MME,MXD1,MYCT1,MYLK,NDRG1,NEK6,NFATC2,NFE2L2,NFIC,NR4A2,OBSCN,PARVB,PDCD7,PLA2G4A,PLAUR,PLD1,PPM1A,PPP3CA,PRKAR2B,PRKCD,PRKCI,PRKRIR,PRTN3,PTGS2,RAG1,RHOB,RIPK2,RNF17,RRM1,S100A10,SERBP1,SERPINE2,SIN3A,SIRPA,SKI,SLC2A3,SSRP1,STXBP1,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM1,TRIB1,TRIM24,TRIO,UBQLN1,VIM,YWHAQ104

apoptosis of acute lymphoblastic leukemia cells DOWN 5.96E-04 BCL2L11,CD40,PRKCD 3

apoptosis of antigen presenting cells DOWN 6.67E-05 ABCG1,CD40,HMGB1,IL15RA,IL18,MCL1,NFE2L2,PLA2G4A,TLR2,TLR4,TNFRSF1B 11

apoptosis of blood cells DOWN 1.10E-06 ABCG1,BCL2L11,BCL3,CAST,CD40,CDK2,CHEK1,E2F1,GFI1,HMGB1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,KLF4,LTBR,MCL1,MXD1,NFATC2,NFE2L2,PLA2G4A,PRKCD,PRTN3,RAG1,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM130

apoptosis of epithelial cells DOWN 2.94E-08 ABCG1,BCL2L11,CD40,CDH2,CEBPA,E2F1,ID1,IL15RA,IL18,IRAK3,MCL1,MYLK,NFE2L2,PLA2G4A,PLAUR,PRKCD,PTGS2,SKI,TCF4,TLR2,TLR4 21

apoptosis of eukaryotic cells DOWN 2.36E-05 ABCG1,ADRB2,ATP1A1,BCL2L11,BCL3,BEX2,BHLHE40,CAST,CD40,CDH2,CDK2,CEBPA,CEBPD,CHEK1,CSF1R,CSNK2A2,CTBP2,CTSB,DEGS1,DNAJC15,DNMT1,DVL2,E2F1,ELAVL1,EMILIN2,FOXO1,GFI1,GNAS,GRN,HBEGF,HIPK1,HMGB1,HTATIP2,ID1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,JAG1,KLF4,LTBR,MCL1,MME,MXD1,MYLK,NDRG1,NEK6,NFATC2,NFE2L2,NFIC,NR4A2,PLA2G4A,PLAUR,PLD1,PPM1A,PPP3CA,PRKAR2B,PRKCD,PRKCI,PRTN3,PTGS2,RAG1,RHOB,RIPK2,RRM1,S100A10,SERBP1,SERPINE2,SIRPA,SKI,SSRP1,STXBP1,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM1,TRIB1,YWHAQ81

apoptosis of leukocytes DOWN 7.56E-07 ABCG1,BCL2L11,BCL3,CAST,CD40,CDK2,CHEK1,E2F1,GFI1,HMGB1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,KLF4,LTBR,MCL1,NFATC2,NFE2L2,PLA2G4A,PRKCD,PRTN3,RAG1,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM129

apoptosis of macrophages DOWN 9.10E-05 ABCG1,HMGB1,IL18,MCL1,NFE2L2,PLA2G4A,TLR2,TLR4,TNFRSF1B 9

apoptosis of normal cells DOWN 4.38E-06 ABCG1,ADRB2,ATP1A1,BCL2L11,BCL3,CAST,CD40,CDH2,CDK2,CEBPA,CHEK1,CSF1R,CSNK2A2,CTBP2,CTSB,E2F1,FOXO1,GFI1,GNAS,HMGB1,ID1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,KLF4,LTBR,MCL1,MXD1,MYLK,NFATC2,NFE2L2,NFIC,NR4A2,PLA2G4A,PLAUR,PLD1,PPP3CA,PRKAR2B,PRKCD,PRTN3,PTGS2,RAG1,RHOB,SERBP1,SERPINE2,SIRPA,SKI,STXBP1,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM156

apoptosis of peritoneal macrophages DOWN 3.06E-05 ABCG1,MCL1,NFE2L2,PLA2G4A,TLR4 5

apoptosis of phagocytes DOWN 3.86E-06 ABCG1,CAST,CD40,HMGB1,IL15RA,IL18,LTBR,MCL1,NFE2L2,PLA2G4A,PRKCD,PRTN3,TLR2,TLR4,TNFRSF1B,TREM1 16

apoptosis of tumor cells DOWN 2.71E-04 BCL2L11,CD40,CDK2,CTSB,E2F1,FOXO1,HBEGF,JAG1,MCL1,NFE2L2,NR4A2,PLAUR,PRKCD,RHOB,TNFSF13B,TRIB1 16

cell death DOWN 2.11E-07 ABCG1,ADAM15,ADRB2,ALDH3B1,ANXA5,ARHGEF12,ATP1A1,ATP2B1,BAG5,BCL2L11,BCL3,BEX2,BHLHE40,BRF1,CAST,CD40,CD74,CDH2,CDK2,CEBPA,CEBPD,CHEK1,CSDA,CSF1R,CSNK2A2,CST3,CTBP2,CTNNA1,CTSB,DACH1,DEGS1,DNAJC15,DNMT1,DVL2,E2F1,EGLN1,ELANE,ELAVL1,EMILIN2,FOSL2,FOXO1,GFI1,GMEB1,GNAS,GRN,HBEGF,HIPK1,HMGB1,HTATIP2,ID1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,JAG1,JUNB,KLF4,LTBR,MCL1,MITF,MME,MXD1,MYCT1,MYLK,NDRG1,NEK6,NFATC2,NFE2L2,NFIC,NR4A2,NUDCD3,OBSCN,PACS2,PARVB,PDCD7,PLA2G4A,PLAUR,PLD1,PPM1A,PPP3CA,PRG2,PRKAR2B,PRKCD,PRKCI,PRKRIR,PRTN3,PSIP1,PTGS2,RAG1,RGS16,RHOB,RIPK2,RNF17,RNPS1,RRM1,S100A10,SERBP1,SERPINE2,SIN3A,SIRPA,SKI,SLC2A3,SSRP1,STXBP1,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOP2B,TPP1,TREM1,TRIB1,TRIM24,TRIO,UBQLN1,VIM,YWHAQ119

cell death of blood cells DOWN 4.89E-07 ABCG1,BCL2L11,BCL3,CAST,CD40,CDK2,CHEK1,CST3,CTSB,E2F1,ELANE,GFI1,HMGB1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,KLF4,LTBR,MCL1,MXD1,NFATC2,NFE2L2,PLA2G4A,PRKCD,PRTN3,RAG1,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM133

cell death of epithelial cells DOWN 3.09E-08 ABCG1,BCL2L11,CD40,CDH2,CEBPA,E2F1,ID1,IL15RA,IL18,IRAK3,MCL1,MYLK,NFE2L2,PLA2G4A,PLAUR,PRG2,PRKCD,PTGS2,SKI,TCF4,TLR2,TLR4 22

cell death of eukaryotic cells DOWN 5.09E-06 ABCG1,ADRB2,ALDH3B1,ATP1A1,ATP2B1,BAG5,BCL2L11,BCL3,BEX2,BHLHE40,CAST,CD40,CDH2,CDK2,CEBPA,CEBPD,CHEK1,CSF1R,CSNK2A2,CST3,CTBP2,CTSB,DEGS1,DNAJC15,DNMT1,DVL2,E2F1,EGLN1,ELANE,ELAVL1,EMILIN2,FOXO1,GFI1,GNAS,GRN,HBEGF,HIPK1,HMGB1,HTATIP2,ID1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,JAG1,JUNB,KLF4,LTBR,MCL1,MME,MXD1,MYLK,NDRG1,NEK6,NFATC2,NFE2L2,NFIC,NR4A2,NUDCD3,PACS2,PLA2G4A,PLAUR,PLD1,PPM1A,PPP3CA,PRG2,PRKAR2B,PRKCD,PRKCI,PRTN3,PSIP1,PTGS2,RAG1,RGS16,RHOB,RIPK2,RRM1,S100A10,SERBP1,SERPINE2,SIRPA,SKI,SSRP1,STXBP1,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOP2B,TPP1,TREM1,TRIB1,UBQLN1,YWHAQ96

cell death of leukocytes DOWN 2.98E-07 ABCG1,BCL2L11,BCL3,CAST,CD40,CDK2,CHEK1,CST3,CTSB,E2F1,ELANE,GFI1,HMGB1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,KLF4,LTBR,MCL1,NFATC2,NFE2L2,PLA2G4A,PRKCD,PRTN3,RAG1,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM132

cell death of macrophages DOWN 7.27E-05 ABCG1,CD40,HMGB1,IL18,MCL1,NFE2L2,PLA2G4A,TLR2,TLR4,TNFRSF1B 10

cell death of myeloid cells DOWN 6.22E-04 CAST,CDK2,ELANE,IRAK3,LTBR,MCL1,PRKCD,PRTN3,TREM1 9

cell death of normal cells DOWN 6.37E-06 ABCG1,ADRB2,ATP1A1,BAG5,BCL2L11,BCL3,CAST,CD40,CDH2,CDK2,CEBPA,CHEK1,CSF1R,CSNK2A2,CST3,CTBP2,CTSB,E2F1,ELANE,FOXO1,GFI1,GNAS,HMGB1,ID1,IFNGR1,IL15RA,IL18,IRAK3,IRS2,JUNB,KLF4,LTBR,MCL1,MXD1,MYLK,NFATC2,NFE2L2,NFIC,NR4A2,PLA2G4A,PLAUR,PLD1,PPP3CA,PRG2,PRKAR2B,PRKCD,PRTN3,PTGS2,RAG1,RHOB,RIPK2,SERBP1,SERPINE2,SIRPA,SKI,STXBP1,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TPP1,TREM1,UBQLN164

cell division process of B lymphocytes DOWN 1.39E-04 BCL2L11,CD40,E2F1,KLF4,KLF9,TNFSF13B 6

cell division process of eukaryotic cells DOWN 4.78E-05 ASCL2,BCL2L11,BCL3,BHLHE40,CAST,CD40,CDK14,CDK2,CEBPA,CEBPD,CHEK1,CHFR,CREG1,CSF1R,CSNK2A2,DEGS1,E2F1,ELAVL1,EREG,GFI1,GRN,HBEGF,ID1,IRS2,JUNB,KLF4,KLF9,LDLRAP1,LMNA,MITF,MXD1,NASP,NEK6,NFATC2,NFE2L2,NR4A2,NUDCD3,PLAUR,PPM1A,PRKCD,PTGS2,RRM1,SKI,SSRP1,TNFSF13B,TOP2B,YWHAQ47

cell division process of lymphocytes DOWN 4.07E-04 BCL2L11,CD40,CDK2,E2F1,GFI1,KLF4,KLF9,NFATC2,TNFSF13B 9

cell movement of bone marrow cells DOWN 8.57E-04 CAST,CTSB,ELANE,FPR1,FUT4,HMGB1,IL18,NFE2L2,PRTN3,PTGS2,SIRPA,TLR2,TLR4,TNFRSF1B 14

cell stage of eukaryotic cells DOWN 2.14E-04 ASCL2,BCL2L11,BCL3,BHLHE40,CD40,CDK2,CEBPA,CEBPD,CHEK1,CHFR,CREG1,DEGS1,E2F1,ELAVL1,GFI1,GRN,ID1,JUNB,KLF4,LDLRAP1,LMNA,MXD1,NASP,NEK6,NFE2L2,NUDCD3,PLAUR,PPM1A,PRKCD,PTGS2,SSRP1,TNFRSF1B,TOP2B,YWHAQ34

cell stage of lymphocytes DOWN 2.18E-04 BCL2L11,CD40,CDK2,E2F1,GFI1,KLF4,TNFRSF1B 7

development of lymphocytes DOWN 3.61E-05 BCL2L11,BCL3,BST1,CD40,CD74,CDK2,CEBPA,CHEK1,CST3,E2F1,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,JUNB,LTBR,MBD2,MCL1,MYLK,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B36

developmental process of mononuclear leukocytes DOWN 2.35E-05 BCL2L11,BCL3,BST1,CD40,CD74,CDK2,CEBPA,CHEK1,CSF1R,CST3,E2F1,FOXO1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JUNB,KLF4,LTBR,MBD2,MCL1,MYLK,NDFIP1,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TREM141

developmental process of osteoclasts DOWN 2.95E-04 CSF1R,IFNGR1,IL18,IRAK3,JAG1,JUNB,MITF,NFATC2,TLR2,TLR4,ZBTB7A 11

differentiation of blood cells DOWN 1.98E-04 BCL3,CD40,CD74,CEBPA,CEBPD,CSF1R,E2F1,FZD8,GFI1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JAG1,JUNB,KLF4,LTBR,MBD2,MYCT1,MYLK,NDFIP1,NFATC2,PRKCI,PTGS2,RAG1,RIPK2,SFXN1,TLR2,TLR4,TNFSF13B,TREM133

differentiation of cells DOWN 6.49E-09 ADAM22,ADRB2,ARL4A,ASCL2,BCL2L11,BCL3,BEX1,BEX2,BHLHE40,CAST,CD40,CD74,CDH2,CDK2,CEBPA,CEBPD,CREG1,CSDA,CSF1R,CTNNA1,CTSB,DNMT1,E2F1,ELAVL1,EREG,FOSL2,FOXO1,FZD1,FZD8,GFI1,GNA11,GRN,HBEGF,HMGB1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,IRAK3,IRS2,JAG1,JUNB,KLF4,KLF9,LMNA,LTBR,MAFF,MBD2,MCL1,MITF,MME,MXD1,MYCT1,MYLK,NDFIP1,NDRG1,NFATC2,NFIC,NID1,NR4A2,PLAUR,PPP3CA,PRKAR2B,PRKCD,PRKCI,PRTN3,PTGS2,RAG1,RIPK2,ROD1,SERPINE2,SFXN1,SKI,SPAG9,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOB1,TREM1,VIM,YWHAQ,ZBTB7A86

differentiation of connective tissue cells DOWN 3.04E-04 ADRB2,ARL4A,CAST,CEBPA,CEBPD,CSF1R,FOSL2,FOXO1,GRN,IL18,IRAK3,IRS2,JAG1,JUNB,KLF4,MITF,NFATC2,NFIC,PLAUR,SKI,TLR2,TLR4,TOB1,ZBTB7A24

differentiation of mononuclear leukocytes DOWN 1.20E-04 BCL3,CD40,CD74,CEBPA,CSF1R,FZD8,GFI1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,JUNB,KLF4,MBD2,MYLK,NDFIP1,NFATC2,PRKCI,PTGS2,RAG1,RIPK2,TLR2,TLR4,TNFSF13B,TREM127

differentiation of osteoclasts DOWN 3.40E-04 CSF1R,IL18,IRAK3,JAG1,JUNB,MITF,NFATC2,TLR2,TLR4,ZBTB7A 10

entry into cell division process of B lymphocytes DOWN 1.77E-04 CD40,KLF4,TNFSF13B 3

entry into cell division process of lymphocytes DOWN 1.42E-04 CD40,E2F1,GFI1,KLF4,TNFSF13B 5

entry into cell division process of normal cells DOWN 8.82E-04 CD40,CDK2,E2F1,GFI1,JUNB,KLF4,PRKCD,TNFSF13B 8

entry into S phase of lymphocytes DOWN 5.50E-05 CD40,E2F1,GFI1,KLF4 4

entry into S phase of normal cells DOWN 3.67E-04 CD40,CDK2,E2F1,GFI1,JUNB,KLF4,PRKCD 7

expression of DNA DOWN 8.89E-04 ASCL2,BCL3,BHLHE40,CEBPA,CREG1,CTBP2,DNMT1,DVL2,E2F1,ENY2,FOSL2,FOXO1,GMEB1,HMGB1,ID1,JUNB,KLF4,KLF9,MITF,MXD1,NFATC2,NFE2L2,NFIC,NR4A2,PDCD7,PPM1A,PPP3CA,PURB,SCML2,SIN3A,TBL1XR1,TCF4,TNFSF13B,TRIM24,YWHAQ,ZBTB7A36

formation of tumor DOWN 2.77E-04 CDK2,CHFR,DACH1,E2F1,HBEGF,HMGB1,IL18,LTBR,MCL1,NFE2L2,PCYT1B,PLAUR,PRKCD,PTGS2,RRM1,TNFRSF1B,TOB1 17

function of leukocytes DOWN 9.21E-04 CSF1R,CTSZ,GFI1,HMGB1,IL18,TLR2,TLR4,TNFSF13B,TOB1 9

growth of eukaryotic cells DOWN 5.99E-05 BCL2L11,CAST,CD40,CDK2,CEBPA,CEBPD,CHEK1,CHFR,CREG1,CSF1R,DACH1,DEGS1,E2F1,ELANE,EMILIN2,EREG,FOXO1,GFI1,GFM1,GNG7,GRN,HBEGF,HMGB1,ID1,IL15RA,IL18,IRS2,JAG1,JUNB,KIF13A,KLF4,LDLRAP1,LMNA,MBD2,MCL1,MITF,NFATC2,NR4A2,NUDCD3,PARVB,PLA2G4A,PLAUR,PLD1,PPM1A,PRKAR2B,PRKCD,PRKCI,PRTN3,PTGS2,RGS16,RHOB,SIRPA,SKI,SLC30A1,TCF4,TNFRSF1B,TNFSF13B,YWHAQ58

hatching DOWN 5.96E-04 GRN,MCL1,PTGS2 3

implantation DOWN 3.30E-04 GRN,HBEGF,KLF9,MCL1,PLA2G4A,PTGS2 6

infiltration of leukocytes DOWN 6.44E-04 ADRB2,CD40,CSF1R,CTSB,ELANE,FUT4,HMGB1,IL18,LTBR,MYLK,NFATC2,NFE2L2,PRKCD,PRTN3,PTGS2,S100A10,TLR2,TLR4,TNFRSF1B 19

influx of neutrophils DOWN 2.01E-04 HMGB1,IL18,IRAK3,LTBR,PLAUR,TLR2 6

interphase of eukaryotic cells DOWN 6.02E-04 ASCL2,BCL2L11,BCL3,BHLHE40,CD40,CDK2,CEBPA,CEBPD,CHEK1,CREG1,DEGS1,E2F1,ELAVL1,GFI1,ID1,JUNB,KLF4,LMNA,MXD1,NASP,NFE2L2,PLAUR,PPM1A,PRKCD,PTGS2,YWHAQ26

invasion of cells DOWN 3.97E-06 ADAM9,CAPN2,CDH2,CHFR,CSNK2A2,CTBP2,CTSB,GRN,HBEGF,HDLBP,HMGB1,HTATIP2,ID1,IL18,IRS2,JUNB,KLF4,LDLRAP1,MBD2,MYLK,NDRG1,NFATC2,NFE2L2,PARVB,PLAUR,PLD1,PRKCD,PRKCI,PTGS2,RAG1,RHOB,S100A10,SERPINE2,TRIO,VIM35

invasion of eukaryotic cells DOWN 6.99E-06 ADAM9,CAPN2,CDH2,CHFR,CSNK2A2,CTBP2,CTSB,GRN,HBEGF,HDLBP,HMGB1,HTATIP2,ID1,IL18,IRS2,JUNB,KLF4,LDLRAP1,MBD2,MYLK,NDRG1,NFATC2,NFE2L2,PARVB,PLAUR,PRKCD,PRKCI,PTGS2,RHOB,S100A10,SERPINE2,TRIO,VIM33

Lymphocyte homeostasis DOWN 7.91E-05 BCL2L11,BCL3,CD40,CD74,CDK2,CEBPA,CHEK1,CST3,E2F1,FZD8,GFI1,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,JUNB,LTBR,MBD2,MCL1,MYLK,NFATC2,NFE2L2,PRKCI,PTGS2,RAG1,RIPK2,SIRPA,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B34

migration of cells DOWN 5.46E-04 ADAM15,ADAM9,ADRB2,AMOTL1,APLP2,CAPN2,CD40,CD74,CDH2,CSF1R,CTBP2,CTSB,CTSZ,CYTIP,ELANE,EREG,FHL1,FOXO1,FPR1,FUT4,FYB,GNA11,GNAS,GRN,HBEGF,HEBP1,HMGB1,HTATIP2,ID1,IFNGR1,IL15RA,IL18,IRS2,JAG1,KLF4,MME,MXD1,MYLK,NFE2L2,NR4A2,PLAUR,PLD1,PRKCD,PRKCI,PROK2,PTGS2,RANBP9,RHOB,S100A10,SERPINE2,SIRPA,SPAG9,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOP2B,TRIO58

migration of eukaryotic cells DOWN 4.31E-04 ADAM15,ADAM9,ADRB2,AMOTL1,APLP2,CAPN2,CD40,CD74,CDH2,CSF1R,CTBP2,CTSB,CTSZ,CYTIP,ELANE,EREG,FHL1,FOXO1,FPR1,FUT4,FYB,GNA11,GNAS,GRN,HBEGF,HEBP1,HMGB1,HTATIP2,ID1,IFNGR1,IL15RA,IL18,JAG1,KLF4,MME,MXD1,MYLK,NFE2L2,NR4A2,PLAUR,PLD1,PRKCD,PRKCI,PROK2,PTGS2,RANBP9,RHOB,S100A10,SIRPA,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOP2B,TRIO55

proliferation of B lymphocytes DOWN 5.08E-04 BCL2L11,CD40,CD74,IL13RA1,IL18,IRS2,JUNB,KLF4,KLF9,NFATC2,PELI1,PRKCD,TLR2,TLR4,TNFSF13B 15

proliferation of cells DOWN 1.34E-07 ABCG1,ADAM15,ADRB2,ASCL2,ATP2B1,BCL2L11,BCL3,BEX1,BEX2,BRF1,CAPN2,CD40,CD74,CDH2,CDK14,CDK2,CEBPA,CEBPD,CGREF1,CHEK1,COL4A3BP,CREG1,CSDA,CSF1R,CSNK2A2,CST3,CTBP2,CTNNA1,CTSB,CTSZ,DACH1,DNMT1,E2F1,ELANE,ELAVL1,EREG,EVI5,FHL1,FOSL2,FOXO1,FUT4,FYB,GFI1,GNA11,GRN,HBEGF,HIPK1,HMGB1,HS6ST1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,IRS2,JAG1,JUNB,KLF4,KLF9,LTBR,MBD2,MITF,MVP,MXD1,MYLK,NASP,NDFIP1,NFATC2,NFE2L2,NFIC,PCYT1B,PDGFC,PELI1,PLA2G4A,PLAUR,PLD1,PPP3CA,PRKAR2B,PRKCD,PRKRIR,PROK2,PRTN3,PTGS2,RAG1,RANBP9,RGS16,RHOB,RIPK2,ROGDI,RRM1,SERPINE2,SIN3A,SIRPA,SKI,TCF4,TLE4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOB1,TRIB1,TRIM24,TRIO,UBIAD1,VIM,ZBTB7A108

proliferation of eukaryotic cells DOWN 7.91E-08 ABCG1,ADAM15,ADRB2,ASCL2,ATP2B1,BCL2L11,BEX1,BEX2,BRF1,CAPN2,CD40,CD74,CDH2,CDK14,CDK2,CEBPA,CEBPD,CHEK1,CSDA,CSF1R,CSNK2A2,CST3,CTNNA1,CTSB,CTSZ,DACH1,E2F1,ELANE,ELAVL1,EREG,FHL1,FOSL2,FOXO1,FUT4,FYB,GFI1,GNA11,GRN,HBEGF,HMGB1,HS6ST1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,IRS2,JAG1,JUNB,KLF4,KLF9,LTBR,MVP,MXD1,MYLK,NDFIP1,NFATC2,NFE2L2,NFIC,PCYT1B,PDGFC,PELI1,PLA2G4A,PLAUR,PLD1,PPP3CA,PRKCD,PROK2,PRTN3,PTGS2,RAG1,RANBP9,RGS16,RHOB,RIPK2,RRM1,SERPINE2,SIN3A,SIRPA,SKI,TCF4,TLE4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOB1,TRIB1,TRIO,UBIAD1,ZBTB7A92

proliferation of mononuclear leukocytes DOWN 2.47E-05 ABCG1,ADRB2,BCL2L11,CD40,CD74,CDK2,CSF1R,CTSZ,FYB,GFI1,HMGB1,HSP90B1,IFNGR1,IL13RA1,IL15RA,IL18,IRS2,JAG1,JUNB,KLF4,KLF9,MVP,NDFIP1,NFATC2,PELI1,PRKCD,PTGS2,RAG1,RIPK2,SIRPA,TLR2,TLR4,TNFRSF1B,TNFSF13B34

proliferation of normal cells DOWN 7.80E-07 ABCG1,ADAM15,ADRB2,ASCL2,ATP2B1,BCL2L11,BEX1,CAPN2,CD40,CD74,CDH2,CDK2,CEBPA,CEBPD,CHEK1,CSF1R,CTNNA1,CTSZ,DACH1,E2F1,ELANE,ELAVL1,EREG,FHL1,FOSL2,FOXO1,FYB,GFI1,GNA11,GRN,HBEGF,HMGB1,HS6ST1,HSP90B1,ID1,IFNGR1,IL13RA1,IL15RA,IL18,IRS2,JAG1,JUNB,KLF4,KLF9,LTBR,MVP,NDFIP1,NFATC2,NFE2L2,NFIC,PDGFC,PELI1,PLAUR,PPP3CA,PRKCD,PROK2,PTGS2,RAG1,RIPK2,SERPINE2,SIN3A,SIRPA,SKI,TCF4,TLR2,TLR4,TNFRSF1B,TNFSF13B,TOB1,TRIB170

proliferation of smooth muscle cells DOWN 2.41E-06 ATP2B1,CAPN2,CEBPD,ELANE,ELAVL1,EREG,FHL1,FOXO1,GNA11,HBEGF,HMGB1,KLF4,NFE2L2,PLAUR,PTGS2,TLR2,TLR4,TRIB1 18

proliferation of vascular smooth muscle cells DOWN 2.34E-04 CEBPD,ELAVL1,FHL1,GNA11,NFE2L2,PLAUR,TLR2,TLR4,TRIB1 9

quantity of antigen presenting cells DOWN 3.78E-04 BCL2L11,CEBPA,CSF1R,HBEGF,IFNGR1,IL15RA,IL18,LTBR,PDGFC,PRKCD,SIRPA,TLR2,TLR4 13

quantity of granulocytes DOWN 2.84E-04 BCL2L11,CEBPA,HMGB1,IL18,LTBR,PRKCD,PROK2,PRTN3,RAG1,TLR2,TLR4,TNFRSF1B 12

quantity of myeloid cells DOWN 2.62E-04 BCL2L11,CEBPA,HMGB1,IL18,LTBR,MXD1,PRKCD,PROK2,PRTN3,RAG1,TLR2,TLR4,TNFRSF1B 13

quantity of phagocytes DOWN 2.77E-04 BCL2L11,CEBPA,CSF1R,HBEGF,HMGB1,IFNGR1,IL15RA,IL18,LTBR,PDGFC,PRKCD,PROK2,PRTN3,SIRPA,TLR2,TLR4,TNFRSF1B 17

reproductive process of blastocyst DOWN 1.38E-04 GRN,HBEGF,MCL1,PTGS2 4

S phase of B lymphocytes DOWN 6.97E-06 BCL2L11,CD40,E2F1,KLF4 4

S phase of lymphocytes DOWN 3.21E-06 BCL2L11,CD40,CDK2,E2F1,GFI1,KLF4 6

survival of cells DOWN 4.05E-04 ABCC6,BCL2L11,BCL3,BEX2,BHLHE40,CD40,CD74,CDK2,CEBPD,CHEK1,CHFR,CSF1R,DNMT1,E2F1,EHD4,EMILIN2,FOXO1,HBEGF,HMGB1,HTATIP2,IL18,IRS2,LAPTM4B,MCL1,MGST1,MITF,MVP,NDRG1,NFE2L2,NR4A2,PLAUR,PPM1A,PPP1R3D,PPP3CA,PRKCD,PROK2,PSIP1,PTGS2,PTP4A2,RIPK2,SIN3A,TLR2,TLR4,TNFRSF1B,TNFSF13B45

survival of eukaryotic cells DOWN 3.10E-04 BCL2L11,BCL3,BEX2,BHLHE40,CD40,CD74,CDK2,CEBPD,CHEK1,CHFR,CSF1R,DNMT1,E2F1,EHD4,EMILIN2,FOXO1,HBEGF,HMGB1,HTATIP2,IL18,IRS2,MCL1,MGST1,MITF,MVP,NDRG1,NR4A2,PLAUR,PPM1A,PPP1R3D,PPP3CA,PRKCD,PROK2,PSIP1,PTGS2,PTP4A2,RIPK2,SIN3A,TLR2,TLR4,TNFRSF1B,TNFSF13B42

survival of mammalia DOWN 4.56E-04 ADRB2,B3GALNT1,BCL2L11,CD40,CD74,CEBPA,CTSB,DNMT1,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,LTBR,MME,MSRA,NFE2L2,PTGS2,RAG1,RIPK2,TLR2,TLR4,TNFRSF1B,TREM1,UNC93B126

survival of normal cells DOWN 3.18E-04 BCL2L11,BCL3,CD40,CEBPD,CHEK1,CSF1R,DNMT1,E2F1,EHD4,FOXO1,HMGB1,IL18,IRS2,MCL1,MITF,MVP,NDRG1,PPP3CA,PROK2,PSIP1,PTGS2,RIPK2,SIN3A,TLR2,TLR4,TNFRSF1B,TNFSF13B27

survival of rodents DOWN 5.06E-04 ADRB2,B3GALNT1,BCL2L11,CD40,CD74,CEBPA,CTSB,DNMT1,HMGB1,HSP90B1,ID1,IFNGR1,IL15RA,IL18,LTBR,MSRA,NFE2L2,PTGS2,RAG1,RIPK2,TLR2,TLR4,TNFRSF1B,TREM1,UNC93B125

synthesis of carbohydrate DOWN 4.23E-04 B3GALNT1,CD40,CEBPA,CSF1R,HS6ST1,IL18,IRS2,MAN2B1,PCYT1B,PLA2G4A,PLD1,PLEK,PPP1R3D,PTGS2,SCAP,SLC35D1,VAC14 17

synthesis of prostaglandin DOWN 9.02E-04 CD40,CD74,MITF,NFATC2,PLA2G4A,PTGS2,VIM 7

synthesis of prostaglandin D2 DOWN 3.48E-04 MITF,PLA2G4A,PTGS2 3

transcription DOWN 1.96E-04 ADRB2,ASCL2,BASP1,BCL3,BHLHE40,BRF1,CD40,CDK2,CEBPA,CEBPD,CREG1,CSDA,CTBP2,DACH1,DNMT1,DVL2,E2F1,ENY2,EREG,FOSL2,FOXO1,GFI1,GMEB1,GRN,HIPK1,HMGB1,HTATIP2,ID1,IL18,JAG1,JUNB,KLF4,KLF9,LMNA,LRRFIP1,LTBR,MAFF,MATR3,MBD2,MITF,MXD1,NEK6,NFATC2,NFE2L2,NFIC,NR4A2,PDCD7,PPM1A,PPP3CA,PRKAR2B,PRKCD,PRKCI,PTRF,PURB,R3HDM1,RHOB,RIPK2,SCAP,SCML2,SIN3A,SKI,SMARCD1,SSRP1,SUPT16H,TBL1XR1,TCF4,TLE4,TLR2,TLR4,TNFRSF1B,TRIM24,VEZF1,WHSC1,YWHAQ,ZBTB7A75

Downregulated genes
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Table S1. Enriched pathways for the 286 upregulated and 403 downregulated genes of CEBPAsilenced cases. Ingenuity 

pathway analysis is performed on the 286 upregulated and 403 downregulated genes. The enriched functional 

pathways (P<0.001 and > 3 genes per pathway) are sorted on their presence in: enriched in both upregulated and 

downregulated genes, enriched in solely the upregulated genes and enriched in solely the downregulated genes. 

Upregulation and downregulation is relative for the CEBPAsilenced group compared to normal cells (CD34+ group). 

 

Table S2. Enriched canonical pathways for the 286 upregulated and 403 downregulated genes. Ingenuity pathway 

analysis is performed on the 286 upregulated and 403 downregulated genes. The enriched canonical pathways 

(P<0.001) are sorted on their presence in the upregulated and downregulated genes, Upregulation and 

downregulation is relative for the CEBPAsilenced group compared to normal cells (CD34+ group). 

 

Table S3. Transcription factor binding sites for the upregulated (n=286) and downregulated (n=403) genes specific for 

the CEBPAsilenced leukemias. Transcription factors binding sites (TFBS) that are enriched among the promoter regions 

(2Kb upstream) of the 286 upregulated and 403 downregulated genes (HG19). The 2Kb upstream sequences for each 

Canonical Pathways Regulation  -Log10(p-value) Gene symbols
upregulated 6.92  MAP2K4, CD247, CD3G, LCK, PRKCQ, GRAP2, SOS1, ZAP70, NFATC4, CD3D, ATM

downregulated - -

upregulated 5.40  MAP2K4, CD247, CD3G, LCK, PRKCQ, GRAP2, SOS1, ZAP70, NFATC4, CD3D, ATM

downregulated - -

upregulated 5.04  CD247, CD3G, PRF1, APAF1, CD3D, FAS, BCL2

downregulated - -

upregulated 4.96  CD247, CD3G, LCK, PRKCQ, GRAP2, ZAP70, TRAT1, NFATC4, CD3D, ATM

downregulated 0.32  CD40, NFATC2, PPP3CA

upregulated 4.77  MAP2K4, CD247, CD3G, PRF1, APAF1, JAK2, SOCS7, CD3D, FAS, BCL2

downregulated - -

upregulated 4.65  CD247, CD3G, LCK, GRAP2, ZAP70, TRAT1, JAK2, CD3D, ATM

downregulated - -

upregulated 4.59  MAP2K4, CD247, CD3G, LCK, PRKCQ, GRAP2, ZAP70, NFATC4, CD3D, ATM

downregulated - -

upregulated 3.46  PRKCQ, SOS1, JAK2, SOCS7, STAT5B, TCF7, ATM

downregulated 0.24  PRKCI, PRKCD

upregulated 3.38  CD247, CD3G, LCK, PRKCQ, ZAP70, CD3D

downregulated 1.86  PRKCI, PRKCD, NFATC2, CAPN2, PPP3CA

upregulated 3.35  MAP2K4, CD247, CD3G, SOS1, ZAP70, NFATC4, CD3D

downregulated 0.49  TOB1, NFATC2, PPP3CA

upregulated 3.21  MAP2K4, SOS1, APAF1, FAS, ATM, BCL2

downregulated - -

upregulated 3.18  CD247, CD3G, LCK, PRKCQ, SOS1, ZAP70, NFATC4, CD3D, ATM, ATF2

downregulated 0.61  GNAS, CSNK1G3, GNA11, NFATC2, GNG7, PPP3CA

upregulated - -

downregulated 3.74  NAGA, GLA, HEXB, B3GALNT1, FUT4
 Glycosphingolipid Biosynthesis - Globoseries

 CD28 Signaling in T Helper Cells

 Prolactin Signaling

 Calcium-induced T Lymphocyte Apoptosis

 Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes

 Myc Mediated Apoptosis Signaling

 Role of NFAT in Regulation of the Immune Response

 CTLA4 Signaling in Cytotoxic T Lymphocytes

 T Cell Receptor Signaling

 PKCθ Signaling in T Lymphocytes

 Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells

 iCOS-iCOSL Signaling in T Helper Cells

 Type I Diabetes Mellitus Signaling

Regulation Matrix name Recognized factors Fold increase P -value

Upregulated V$DMRT1_01 DMRT1 2.2661 0.00023791

Upregulated V$ARNT_01 arnt, arnt-L 2.2034 4.1679E-05

Upregulated V$CETS1P54_03 Ets-1, Ets-1 deltaVII, c-Ets-1, c-Ets- 1.9741 0.00087532

Upregulated V$SZF11_01 SZF1-isoform3 1.9113 0.00082443

Upregulated V$ELK1_02 Elk-1, Elk1-isoform1 1.8956 0.00093331

Upregulated V$NRF1_Q6 NRF-1 1.8121 0.00017664

Upregulated V$E2F6_01 E2F-6 1.7668 0.00051006

Upregulated V$R_01 R 1.697 0.00037116

Upregulated V$USF_02 USF, usf1 1.5658 1.6743E-07

Upregulated V$MAX_01 max-isoform2 1.5469 3.2868E-07

Upregulated V$AHRARNT_02 AhR, AhR2, arnt, arnt-L 1.5348 0.00090063

Upregulated V$WHN_B FOXN1 1.5285 0.00013026

Upregulated V$USF_Q6 USF, USF2, USF2A-delta-H, USF2a, 1.526 4.6985E-05

Downregulated V$ARNT_01 arnt, arnt-L 1.7106 0.00070203

Downregulated V$CMYC_02 c-Myc, c-Myc I 1.6331 0.00082238

Downregulated V$ARNT_02 arnt, arnt-L 1.5848 4.5006E-05

Downregulated V$CLOCKBMAL_Q6 Clock:BMAL1, Clock:BMAL2 1.5345 0.00079547



110 
 

gene is gathered from the UCSC database. Regulation: genes that are upregulated and downregulated compared to 

CD34+. Matrix name: Enriched transcription factor binding name. Recognized factors: Binding sites that are 

recognized. Fold-increase: the ratio that a TFBS is enriched compared to 5000 randomly selected genes. 

<Table S4 is not included> 

Table S4. C/EBPα target genes. Gene symbols: Genes that were closest to the detected regions-of-interest. 

Chromosome: chromosome number. Genomic location start -stop: The genomic location for which the binding was 

detected. 

 

Table S5. Enriched transcription factor binding sites for the detected binding regions. TFBS analyses among the detected 

binding regions (based on wild-type C/EBPα from chip-on-ChIP), resulted in the detection of the C/EBPα consensus 

sites. 

 

Table S6. Enriched pathways for the 24 upregulated and 25 downregulated genes of CEBPAsilenced cases. Ingenuity 

pathway analysis is performed on the 24 upregulated and 25 downregulated genes. Enriched functional pathways are 

Transcription Factor Recognized factors Fold increase P -value Site

CEBP_Q2 C/EBP, C/EBPalpha, C/EBPalpha(p20), 4.2672 2.5008E-38 consensus 

CEBP_Q2_01

C/EBPalpha, C/EBPalpha(p20, p30), C/EBPbeta(LAP, 

p20, p34, p35), C/EBPgamma, CRP2, CRP3, LAP*-NF-

M, NF-IL6-1, NF-IL6-2, NF-IL6-3, cebpe

4.2866 2.1402E-39 consensus

CEBPA_01
C/EBP, C/EBPalpha, C/EBPalpha(p20), 

C/EBPalpha(p30)
3.9335 0 consensus

CEBPB_01 C/EBPbeta(LAP), C/EBPbeta(p35), CRP2 4.9584 1.0174E-39 consensus 

CEBPB_02 C/EBPbeta(LAP), C/EBPbeta(p35), CRP2 5.262 5.8184E-42 consensus 

CEBPDELTA_Q6 CRP3 3.8018 3.7812E-29 -

Regulation Function Function Annotation P -value Genes Nr.  of genes

 apoptosis of T lymphocytes 4.50E-04  BCL2, CASP1, CD47, MAP2K4 4

 T cell development 2.64E-03  BCL2, CASP1, CCR9, CD47, MAP2K4 5

 apoptosis of T lymphocytes 4.50E-04  BCL2, CASP1, CD47, MAP2K4 4

 hematopoiesis 2.22E-03  BCL2, CASP1, CCR9, CD47, MAP2K4, OGT 6

 T cell development 2.64E-03  BCL2, CASP1, CCR9, CD47, MAP2K4 5

 cell movement of neutrophils 5.79E-03  B4GALT1, CASP1, CD47 3

 proliferation of T lymphocytes 6.55E-03  B3GNT2, BCL2, CD47, MAP2K4 4

 apoptosis of T lymphocytes 4.50E-04  BCL2, CASP1, CD47, MAP2K4 4

 hematopoiesis 2.22E-03  BCL2, CASP1, CCR9, CD47, MAP2K4, OGT 6

 T cell development 2.64E-03  BCL2, CASP1, CCR9, CD47, MAP2K4 5

 cell movement of bone marrow cells 3.91E-03  B4GALT1, CASP1, CD47 3

 cell death of leukemia cells 6.52E-05  BCL2, CASP1, CD47 3

 apoptosis of B lymphocytes 3.73E-04  BCL2, CASP1, CD47 3

 killing of eukaryotic cells 4.11E-04  BCL2, CD47, CEBPG 3

 apoptosis of T lymphocytes 4.50E-04  BCL2, CASP1, CD47, MAP2K4 4

 cell viability of normal cells 4.96E-04  BCL2, CD47, OGT 3

 apoptosis of cardiomyocytes 8.15E-04  BCL2, CASP1, MAP2K4 3

 cell viability of eukaryotic cells 8.50E-04  BCL2, CASP1, CD47, OGT 4

 apoptosis of fibroblasts 3.09E-03  BCL2, CASP1, MAP2K4 3

 autophagy of eukaryotic cells 1.14E-03  BCL2, CASP1, GOPC 3

 transmembrane potential of mitochondria 2.47E-03  BCL2, CD47, MAP2K4 3

 apoptosis of T lymphocytes 4.50E-04  BCL2, CASP1, CD47, MAP2K4 4

 developmental process of leukocytes 2.54E-03  BCL2, CASP1, CCR9, CD47, MAP2K4, OGT 6

 T cell development 2.64E-03  BCL2, CASP1, CCR9, CD47, MAP2K4 5

 apoptosis of T lymphocytes 4.50E-04  BCL2, CASP1, CD47, MAP2K4 4

 autophagy of eukaryotic cells 1.14E-03  BCL2, CASP1, GOPC 3

 T cell development 2.64E-03  BCL2, CASP1, CCR9, CD47, MAP2K4 5

 modification of protein 8.30E-07  B3GNT2, B4GALT1, BCL2, CASP1, CD47, FBXW2, MAP2K4, NMT1, OGT, SEPX1, STK38 11

 moiety attachment of protein 8.02E-06  B3GNT2, B4GALT1, BCL2, CD47, FBXW2, MAP2K4, NMT1, OGT, STK38 9

 glycosylation of protein 2.15E-04  B3GNT2, B4GALT1, OGT 3

Cell death  killing of cells 1.64E-03  HSP90B1, MSRA, PLA2G4A 3

Lipid metabolism  accumulation of lipid 6.42E-03  ACSL1,  COL4A3BP, PLA2G4A 3

Small Molecule Biochemistry  accumulation of lipid 6.42E-03  ACSL1,  COL4A3BP, PLA2G4A 3

 Molecular Transport  accumulation of lipid 6.42E-03  ACSL1, COL4A3BP, PLA2G4A 3

Connective Tissue Development and Function differentiation of osteocytes 6.65E-03 FOSL2,IRAK3,TOB1 3

 Cellular Development  differentiation of osteocytes 6.65E-03  FOSL2,IRAK3,TOB1 3

Downregulated

Upregulated

 Post-Translational Modification

 Cell Death

 Cell Morphology

 Cellular Development

 Cellular Function and Maintenance

 Cell-mediated Immune Response

 Hematological System Development and Function

 Hematopoiesis
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considered if P<0.01 and the pathway contains more than 3 genes. Upregulation and downregulation is relative for 

the CEBPAsilenced group compared to normal cells (CD34+ group). 

 

Table S7. Enriched TFBSs in the 2Kb upstream promoter regions of the 24 upregulated genes. Transcription factors 

binding sites (TFBS) that are enriched among the promoter regions (2Kb upstream) of the 24 upregulated genes 

(HG19) that also showed binding by CEBPA within the 32D-model-system. The 2Kb upstream sequences for each gene 

is gathered from the UCSC database. Transcription Factor: The enriched transcription factor name. Recognized 

factors: Binding sites that are recognized. Fold-increase: the ratio that a TFBS is enriched compared to 5000 randomly 

selected genes. P-value: Significance. The numbers under the gene-symbols indicate how often the representative TF 

was detected. An empty field illustrates that the TFBS was not enriched for the particular group. 

  

Transcription Factor Recognized factors Fold increase P -value SLC7A11 MRPL41 CEPT1 BCL2 UBTD1 ATP6V1B2 STK38 GOPC CASP1 OGT MAP2K4 CD47 ACAD8 YPEL1 CCR9 SSBP2 B3GNT2 HMGCR FBXW2 NIN SEPX1 B4GALT1 CEBPG NMT1

V$AFP1_Q6 AFP1, ATBF1 3.8311 0.00080592 0 0 1 0 0 0 3 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0

V$EVI1_04 Evi-1 3.3417 0.00067471 2 0 3 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

V$SP1_Q6 Sp1, Sp1-isoform1, Sp1-isoform2 3.1249 5.6024E-06 0 8 0 0 2 0 0 0 0 0 0 1 0 3 0 0 3 0 0 0 3 2 0 0

V$GC_01 3.0977 1.0233E-05 0 8 0 0 2 0 0 0 0 0 0 1 0 2 0 0 3 0 0 0 3 2 0 0

V$SP4_Q5 sp4 2.8884 0.00023466 0 8 0 0 1 0 0 0 0 0 0 1 0 3 0 0 1 0 0 0 1 1 0 0

V$SP1_Q6_01 Sp1, Sp1-isoform1, Sp1-isoform2, sp3, sp3-isoform1, sp3- 2.8384 2.3341E-05 0 8 0 0 2 0 0 0 0 0 0 1 0 3 0 0 3 0 0 0 3 2 0 0

V$AP2ALPHA_03 AP-2alphaA 2.7243 0.00043649 0 2 2 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 2 0 4

V$RP58_01 RP58 2.7157 0.001 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 2 1 0

V$EVI1_01 Evi-1 2.5133 0.001 1 1 2 0 0 2 2 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1

V$SP1_Q4_01 Sp1, Sp1-isoform1, Sp1-isoform2, Sp2, sp3, sp3-isoform1, 2.4267 0.00011068 0 8 1 0 2 0 0 0 0 0 0 1 0 3 0 0 4 0 0 0 3 2 0 0

V$CNOT3_01 CNOT3 2.1077 0.001 0 3 0 7 0 0 0 0 0 0 0 0 0 3 0 1 0 0 2 2 0 4 1 0

V$MUSCLE_INI_B 2.0079 0.00051498 0 11 0 5 1 0 1 0 0 0 1 2 0 1 0 3 1 0 0 1 1 1 0 0

V$MYCMAX_B c-Myc, c-Myc I, max-isoform1, max-isoform2 1.7818 0.00041057 0 4 1 5 4 0 2 2 0 0 0 4 1 4 0 1 2 1 4 1 3 1 1 1

V$DMRT1_01 DMRT1 1.7216 4.3474E-05 5 0 4 0 0 2 2 2 5 4 2 4 2 7 4 1 4 0 0 4 1 0 3 4

V$AP4_Q6 AP-4, TFAP4 1.6665 0.00088342 0 24 2 0 0 0 0 0 1 3 2 2 0 0 1 0 3 0 0 0 3 2 1 0

V$AP2ALPHA_02 AP-2alphaA 1.6245 0.0008359 0 4 4 1 6 1 4 0 1 1 0 2 3 0 0 4 1 1 1 0 7 2 1 6

V$CEBPB_01 C/EBPbeta(LAP), C/EBPbeta(p35), CRP2 1.6187 0.00065267 4 0 3 1 3 5 2 5 2 2 3 0 1 1 0 1 2 4 3 3 2 1 1 1

V$PU1_Q4 PU.1-xbb1, SPI1 1.5834 1.6533E-05 5 2 4 2 1 8 22 2 5 0 1 2 4 1 6 5 1 3 2 2 2 7 2 3

V$E4BP4_01 E4BP4 1.5249 0.00023745 16 1 2 1 8 4 3 5 5 3 3 0 3 2 2 2 1 5 4 5 0 1 0 0

V$NMYC_01 N-Myc 1.5041 0.00011056 0 7 5 14 6 4 4 5 0 3 0 8 5 5 3 3 5 1 5 2 2 1 1 4

V$BEN_01 Ben 1.4973 0.00021861 0 15 5 14 5 1 1 2 0 2 0 5 3 5 2 5 2 0 3 2 3 5 5 2

V$NRF1_Q6 NRF-1 1.4851 0.0007888 0 5 6 10 6 4 4 2 0 3 0 9 1 6 1 2 2 4 3 1 0 1 2 2

V$NKX61_01 NKX6A 1.4731 0.00003336 14 0 6 0 4 6 7 3 6 8 14 3 2 1 7 5 3 8 5 3 2 0 2 5

V$OCT1_07 Oct-1, POU2F1, POU2F1a, POU2F1b, POU2F1c 1.4559 0.00013524 10 0 8 1 4 8 2 6 6 7 5 0 8 0 7 1 2 6 4 5 3 1 1 1

V$CREBP1_01 ATF-2-xbb4 1.4489 0.00028742 9 1 3 8 3 8 5 8 10 0 4 0 4 2 2 4 2 8 4 4 0 2 2 1

V$CEBPGAMMA_Q6 C/EBPgamma 1.4181 0.00086097 14 0 6 2 4 6 2 7 6 6 1 4 4 2 2 3 1 4 2 4 0 1 1 3

V$DMRT3_01 DMRT3 1.4008 0.0005099 6 0 6 1 6 7 2 8 9 9 5 5 5 3 8 1 1 2 5 4 1 2 1 3

V$IPF1_Q6 PDX1, ipf1 1.3754 0.00010223 18 1 8 0 4 7 6 5 11 7 10 6 9 2 8 8 4 8 5 6 2 1 3 2

V$VBP_01 TEF-xbb1, Thyrotroph embryonic factor, Thyrotroph 1.3724 0.00019089 20 1 4 2 12 9 5 13 9 8 8 1 4 2 4 4 3 7 6 8 1 2 1 2

V$R_01 R 1.3354 0.00077965 1 27 5 18 7 1 3 0 1 2 4 4 3 7 2 6 8 4 3 3 10 4 6 2

V$SOX9_B1 Sox9 1.332 0.0007278 7 3 4 2 6 13 5 9 3 8 6 11 9 3 8 2 3 5 4 5 3 2 6 2

V$LHX3_01 LHX3a, LHX3b, Lhx3a, Lhx3b 1.3067 0.00066458 11 2 10 1 3 7 14 11 8 8 13 6 5 1 11 10 2 6 6 3 1 0 2 2

V$ARNT_01 arnt, arnt-L 1.3025 0.001 2 8 8 17 9 8 7 9 4 8 3 6 7 6 6 2 6 2 6 4 4 5 4 6

V$IPF1_Q4_01 Ipf1, ipf1, ipf1:Pbx 1.3017 0.00092139 16 0 9 0 3 7 5 5 13 8 7 9 14 3 5 8 4 7 5 6 2 2 3 2

V$E2F_Q2 DP-1, E2F, E2F-1, E2F-3, E2F-3A, E2F-3B, E2F-3a, E2F-4, 1.3016 0.00075182 0 13 8 24 9 1 3 3 0 0 5 7 2 17 2 7 12 1 2 5 10 14 12 3

V$S8_01 S8 1.2978 0.00084432 17 2 14 1 7 6 8 7 10 11 9 3 4 2 7 4 4 5 4 4 4 1 5 4
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Double-mutant AML as a Distinctive Disease Entity 

Erdogan Taskesen, Lars Bullinger, Andrea Corbacioglu, Mathijs A. Sanders, Claudia A. Erpelinck-Verschueren, Bas J. 

Wouters, Sonja C. van der Poel-van de Luytgaarde, Frederik Damm, Jürgen Krauter, Arnold Ganser, Richard F. Schlenk, 

Bob Löwenberg, Ruud Delwel, Hartmut Döhner, Peter J. Valk and Konstanze Döhner. 

ABSTRACT 

We evaluated concurrent gene mutations, clinical outcome, and gene expression signatures of CEBPA double 

(CEBPAdm) versus single (CEBPAsm) mutations in 1182 cytogenetically normal AML (CN-AML) patients (16-60 years). 

We identified 151 (12.8%) patients with CEBPA mutations (91 CEBPAdm and 60 CEBPAsm). The incidence of germline 

mutations was 7% (5 out of 71), including three C-terminal mutations. CEBPAdm patients had a lower frequency of 

concurrent mutations than CEBPAsm patients (P<.0001). Both, CEBPAdm and CEBPAsm were associated with favorable 

outcome compared to CEBPAwt [5-year overall survival (OS), 63% and 56% versus 39%; P<.0001 and P=.05, 

respectively]. However, in multivariable analysis only CEBPAdm was a prognostic factor for favorable outcome [OS, 

hazard ratio (HR): .36, P<.0001; event-free survival, HR: .41, P<.0001; relapse-free survival, HR: .55, P=.001)]. Outcome 

in CEBPAsm is dominated by concurrent NPM1 and/or FLT3 internal tandem duplication (ITD) mutations. Unsupervised 

and supervised GEP analyses showed that CEBPAdm AML (n=42), but not CEBPAsm AML (n=18) expressed a unique gene 

signature. A 25-probeset prediction signature for CEBPAdm AML showed 100% sensitivity and specificity. Based on 

these findings, we propose that CEBPAdm should be clearly defined from CEBPAsm AML and considered as a separate 

entity in the classification of AML. 

INTRODUCTION 

In the current World Health Organization (WHO) classification of acute myeloid leukemia (AML), “AML with mutated 

CEBPA (CCAAT/ enhancer binding protein alpha)” has been designated as a provisional disease entity in the category 

“AML with recurrent genetic abnormalities” 199,200.  

CEBPA encodes a transcription factor that is essential for neutrophil development. Targeted disruption of Cebpa in 

mice results in a selective block in early granulocyte development, a hallmark of AML 165,175. Two proteins may be 

translated from the CEBPA transcripts, i.e., a 42kDa (p42) and a shorter 30kDa (p30) protein both translated from the 

same mRNA transcript. The p42 isoform contains two regulatory transactivation domains (TAD1 and TAD2) in the N-

terminus, while the shorter p30 isoform only carries the TAD2 domain. Both isoforms contain the C-terminal basic 
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DNA-binding domain and the leucine zipper (bZIP), involved in DNA-binding and protein dimerization. In AML, CEBPA 

mutations mainly occur in cytogenetically normal (CN) AML (CN-AML) with an incidence of 5-14% 27,28,31,36-42. Two 

main types of mutations can be distinguished: N-terminal frame-shift mutations resulting in the translation of a 30-

kDa protein only, and the C-terminal in-frame mutations in the basic zipper region affecting DNA-binding and homo- 

and heterodimerization 28,43. As a consequence, these mutations create an imbalance between proliferation and 

differentiation of hematopoietic progenitors 40,180.  

AML with CEBPA mutations can be separated into two subgroups, i.e., those with a single mutation (CEBPAsm) and 

those with double mutations (CEBPAdm) 35,45-48. In the majority of CEBPAdm AML, both alleles are mutated 46. These 

biallelic mutations frequently consist of an N-terminal mutation on one allele and a C-terminal bZIP mutation on the 

other. In CEBPAsm AML, mutations occur either in the N- or in the C-terminus of the gene. In previous studies, in which 

these two subgroups were not considered, AML with mutated CEBPA had a relatively good outcome 31,36,38,41. More 

recent data suggest that this favorable outcome is mainly observed in AML with CEBPAdm and not CEBPAsm 35,45-48. 

Moreover, it has been suggested that concurrent mutations may occur more frequently in CEBPAsm than in CEBPAdm 

AML. The impact of coexisting mutations remains elusive and needs to be validated in large cohorts.  

By applying gene expression profiling (GEP), it was demonstrated that CEBPAdm AML can be distinguished from 

CEBPAsm and the majority of CEBPAwt AML based on a characteristic signature 35. However, a CEBPAdm GEP signature 

did not predict CEBPAdm AML with maximum accuracy, since AML in which CEBPA was silenced by promoter 

hypermethylation (CEBPAsilenced) carried a highly similar signature18,34. 

Objectives of this study were to evaluate the impact of CEBPAdm versus CEBPAsm on clinical outcome of CN-AML and 

to investigate the impact of concurrent NPM1mutant and/or FLT3ITD. In addition, we searched for CEBPA-associated 

gene signatures and determined the frequency of predisposing CEBPA germline mutations. For these purposes, we 

combined data sets from the Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) and Swiss Group for 

Clinical Cancer Research (SAKK) and the German-Austrian AML Study Group (AMLSG). 

PATIENTS AND METHODS 

Patients and molecular analyses 

Diagnostic bone marrow (BM) or peripheral blood (PB) samples from 1182 younger adults (16-60 years) with CN-AML 

were analyzed; 193 patients were enrolled on HOVON/SAKK protocols -04, -04A, -29, and -42 (available at 

www.hovon.nl) 201-204, and 989 patients on AMLSG protocols AMLHD93 (n=74) 205, AML HD98A (n=313) 206, AMLSG 

07-04 (n=376; ClinicalTrials.gov Identifier NCT00151242), AML SHG 02-95 (n=94) 207, and AML SHG 01-99 (n=180, 

ClinicalTrials.gov Identifier NCT00209833). All patients provided written informed consent in accordance with the 

Declaration of Helsinki. All trials were approved by the Institutional Review Board of Erasmus University Medical 

Center, the University of Ulm, and Hannover Medical School. 
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Mutation analyses for the genes FLT3 (internal tandem duplications [ITD] and tyrosine kinase domain mutations [TKD]) 

and NPM1 were performed as described previously 24,208,209. CEBPAdm and CEBPAsm AML were identified by denaturing 

high-performance liquid chromatography (dHPLC) or direct sequencing as described 35. Cases that carried an insertion 

polymorphism 35,48 (http://www.ncbi.nlm.nih.gov/sites/snp; http://genome.ucsc.edu/cgi-bin/hgGateway; 

http://www.ensembl.org/Homo_sapiens/Gene/Variation_Gene) or variation(s) that did not lead to amino acid 

changes were considered wild-type. Cases were categorized as CEBPAdm when two different mutations or one 

homozygous mutation were present as determined by sequencing analysis; cases with only a single heterozygous 

mutation were designated as CEBPAsm. In 71 of the 151 patients with CEBPA mutations, DNA obtained from buccal 

swabs (n=52), PB (n=8) or BM (n=11) in complete remission (CR) was studied for the presence of CEBPA germline 

mutations. Patient demographics and molecular characteristics are summarized in Table 1. All CEBPA-mutated 

patients, except for 07-04 treated patients within the AMLSG protocol, have been previously reported in different 

studies 31,35,38. 

Gene Expression Profiling 

Data from GEP analysis were available in 674 AML (53% CN-AML, HOVON-SAKK and AMLSG-cohorts), generated using 

Affymetrix (Santa Clara, CA, USA; Table S1). Sample processing and quality control were carried out as described 

previously 18,181. For both cohorts, normalization of raw data was processed with Affymetrix Microarray Suite 5 (MAS5) 

to target intensity values at 100. Intensity values were log2 transformed and mean centered per probeset per cohort. 

GEP data are available at the NCBI Gene Expression Omnibus [accession numbers GSE14468 (HOVON-SAKK cohort) 

and GSE22845 (AMLSG-cohort)]. There were 42 CEBPAdm and 18 CEBPAsm cases for which the GEP was determined 

(Table S1).  

Statistical Analyses 

Statistical analyses were performed using Mathworks (Matlab R2009b) with the statistical, bioinformatics and pattern 

recognition toolbox (Prtools). For clinical, molecular, univariate and multivariate analyses, patients with CN-AML and 

age ≤ 60 (Table S1) were included. Molecular and clinical variables of both patient cohorts (HOVON-SAKK and AMLSG) 

were comparable. Differences were assessed for CEBPAsm and CEBPAdm groups in comparison with CEBPAwt group 

(Table 1), by using the Mann-Whitney-U test for continuous variables and the two-sided Fisher exact test for 

categorical variables. 

Outcome measures of the HOVON-SAKK and AMLSG-cohorts were comparable (log-rank test overall survival (OS), P= 

.08; event-free survival (EFS), P= .47; Figure S1A and S1B, respectively). There were no statistical differences in 

outcome in patients receiving autologous or allogeneic hematopoietic stem cell transplantation between the HOVON-

SAKK and AMLSG-cohorts (log-rank test OS, P= .68; EFS, P= .89; Figure S2A and S2B respectively). 
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For univariate analysis, significance was assessed using the stratified log-rank test and Kaplan-Meier estimates for OS, 

EFS and relapse-free survival (RFS). The recommended consensus criteria 210 were used for the definition of CR and 

survival endpoints such as OS, EFS, and RFS. Multivariate analysis was performed by using stratified Cox’s proportional 

hazard model. For all analyses, a P-value less or equal than .05 was considered statistically significant and for survival 

analyses, P-values were computed using the full time span. Note that the close testing procedure 211 was applied and 

a correction for multiple testing 212 was only performed if the global log-rank test resulted in a P-value > .05. 

For gene expression-based classification of CEBPAdm cases, GEP of the HOVON-SAKK cohort was used to derive the 

25-probeset predictive signature and the AMLSG-cohort as validation set. To summarize, a logistic regression model 

with Lasso regularization (a continuous feature selection procedure) was used as it takes the correlation structure 

between the probesets into account (Supplementary material: creation and evaluation of the CEBPAdm predictive 

signature). 

RESULTS 

Frequency and types of acquired CEBPAdm and CEBPAsm mutations 

CEBPA mutations were detected in 151 of the 1182 (12.8%) CN-AML; 91 (60%) patients had CEBPAdm, within these 

the combination of N- and C-terminal mutations was the predominant genotype (82/91). CEBPAdm cases with only N-

terminal or C-terminal mutations were less frequently observed (4/91 and 5/91, respectively). Sixty of the 151 (40%) 

CEBPA-mutated cases had CEBPAsm which occurred most frequently in the N-terminus (47/60). Only 13 of the 60 

CEBPAsm cases had in-frame insertion or deletion mutations affecting the bZIP domain (Figure 1). 

CEBPA germline mutation analysis 

Five out of 71 (7%) CEBPA-mutant AML patients analyzed carried CEBPA germline mutations: in two of the 5 patients, 

the germline mutation was localized in the N-terminus and both acquired a C-terminal mutation. Both patients had a 

family history of AML and were diagnosed at young age. In the remaining three patients, the germline mutation was 

in the C-terminus; one of these patients gained an additional N-terminal mutation and the second patient an 

additional C-terminal mutation at the time of AML diagnosis. None of these three patients had a family history of AML. 

Alignment to distinct SNP databases (http://www.ncbi.nlm.nih.gov/sites/snp; http://genome.ucsc.edu/cgi-

bin/hgGateway; http://www.ensembl.org/Homo_sapiens/Gene/Variation_Gene) did not identify one of these 

germline sequence variations as a polymorphism. Using the PolyPhen (http://genetics.bwh.harvard.edu/pph/) 

database, all three C-terminal mutations were predicted to be damaging to the function and structure of the protein 

(Table 2). 

Association of acquired CEBPAdm and CEBPAsm mutations with concurrent gene mutations and clinical characteristics 
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Concurrent mutations were seen less frequently in CEBPAdm than in CEBPAsm AML (22% versus 60%; P<.0001, Figure 

1); frequencies for NPM1mutant were 3.3% and 35% (P<.0001), and for FLT3ITD were 7.7% and 30% (P=.00015), 

respectively (Table 1). When comparing CEBPAsm and CEBPAwt AML, NPM1mutant were slightly less frequent in CEBPAsm 

AML (35% versus 54.3%; P=.018); the frequency of FLT3ITD was comparable between the two groups (30% versus 

33.7%). 

Regarding presenting clinical characteristics, CEBPAdm mutations were associated with younger age (median 44 versus 

48 years; P=.04) and lower platelet counts (median 38x109/L versus 65x109/L; P<.0001) compared with CEBPAwt 

patients (Table 1). 

Impact of CEBPAdm and CEBPAsm on response to induction therapy and clinical outcome 

For clinical outcome analyses, 1182 CN-AML were considered. CEBPAdm was associated with a higher CR rate when 

compared with CEBPAsm (92% versus 78%, P=.02) and CEBPAwt (92% versus 79%, P=.002). There was no difference in 

CR probability between CEBPAsm and CEBPAwt patients (78% versus 79%, P=.86).  

The median follow-up time for survival in the 1182 CN-AML patients was 33 months (95%-CI, 25.6 to 40.4); the 

estimated 5-year OS and RFS were 42% (95%-CI, 39% to 45%) and 34% (95%-CI, 31% to 38%), respectively.  

CEBPAdm AML was associated with a significantly superior outcome compared with CEBPA
wt

 AML (5-year OS, 63% 

versus 39%, P<.0001; EFS, 45% versus 28%, P<.0001; RFS, 44% versus 32%, P=.05; Figures 2A and supplementary 

Figures S3A and S3D). A somewhat better outcome was also found for CEBPAsm AML compared with CEBPAwt AML (5-

year OS, 55% versus 39%, P=.05; RFS, 49% versus 32%, P=.02; but not EFS, 37% versus 28%, P=.22). No significant 

difference was evident between CEBPAdm and CEBPAsm AML (5-year OS, P=.06; EFS, P=.16; RFS, P=.48). Of note, no 

differences in outcome were observed between CEBPAsm patients with either C-terminal (n=13) or N-terminal (n=47) 

mutations (5-year OS, 54% versus 56%, P= .58; Figure S4). 

In multivariate analyses considering other prognostic indicators (listed in Table 3), the presence of CEBPAdm was an 

independent prognostic factor for favorable OS (HR, .36, P<.0001), EFS (HR, .41, P<.0001) and RFS (HR, .55, P=.001), 

whereas CEBPAsm did not impact these three endpoints (Table 3).  

Treatment outcome of AML with CEBPAsm is dominated by FLT3 / NPM1 genotypes 

Finally, we performed explorative subgroup analyses in CEBPAsm and CEBPAwt AML to evaluate the impact of four 

FLT3/NPM1 genotype subgroups: FLT3ITD/NPM1mutant (n=10); FLT3ITD/NPM1wt (n=8); FLT3wt/NPM1mutant (n=11); and 

FLT3wt/NPM1wt (n=21). Ten cases from the CEBPAsm group were excluded for which the genotypes were unknown. 

Among patients with CEBPAsm AML, the FLT3ITD/NPM1
wt 

genotype had an inferior OS compared to those with the 

FLT3wt/NPM1wt genotype (5-year OS, 25% versus 49%, P=.05; Figure 2B); for EFS and RFS, there was a trend towards 

an inferior outcome (Figure S3B and S3E); in contrast, the FLT3wt/NPM1mutant genotype associated in trend with a 
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favorable outcome compared with the FLT3wt/NPM1wt genotype (5-year OS, 78% versus 49%, P=.2, EFS: 59% versus 

32%, P=.08, RFS: 66% versus 40%, P=.38, Figure 2B, S3B and S3E). In analogy, in the CEBPA
wt

 group the FLT3ITD/NPM1
wt 

genotype had a significantly inferior survival compared with the FLT3wt/NPM1wt genotype (5-year OS, 17% versus 34%, 

P=.001; EFS, 11% versus 14%, P=.04; RFS, 15% versus 24%, P=.002; Figure 2C, S3C and S3F), whereas the 

FLT3wt/NPM1mutant genotype was associated with a favorable outcome (5-year OS, 57% versus 34%, P<.0001; EFS, 47% 

versus 14%, P<.0001; RFS: 50% versus 24%, P<.0001; Figure 2C, S3C and S3F). Thus, we observed comparable trends 

for favorable (FLT3wt/NPM1mutant) and inferior (FLT3ITD/NPM1
wt

) outcome in the CEBPAsm and CEBPA
wt

 subgroups. The 

outcome for all CEBPAsm FLT3/NPM1 genotypes was higher (not significant, P> .05), compared to the CEBPAwt 

genotypes, however, the distinct groups were relatively small. For CEBPAdm AML, sample sizes of the composite 

genotypic subgroups were too small for analysis. 

Unsupervised analyses of GEP showed homogeneity in CEBPAdm AML cases 

Gene expression profiling (GEP) was performed in a subset of the CN-AMLs patients and also includes cytogenetically 

abnormal patients (Table S1; n=674). Unsupervised analyses, i.e. by computing pair-wise Pearson’s correlation 

coefficients of 674 AML cases, revealed distinct GEP clusters (Figure 3A), including the known clusters of AML with 

inv(16), t(15;17) or t(8;21), as shown previously 18. These subtypes revealed high correlation within the GEP cluster 

(average correlation: .42, .49 and .49, respectively) and differed significantly between the AML cases with any of these 

aberrations (P<.0001, P<.0001, and P<.0001, Figure S5B, S5C and S5E). We observed that the CEBPAdm AML cases 

were highly similar within the cluster (average correlation: .35) and differed significantly from cases without a CEBPAdm 

(P<.0001, Figure S5D). CEBPAsm AML cases showed reduced similarity (average correlation: .15) and did not differ from 

cases without CEBPAsm (P=.12, Figure S5A and Figure 3A).  

CEBPAdm AML is accurately predicted based on GEP 

The previously predictive CEBPAdm signature 35 was hampered by the recently reported CEBPA silenced AML cases 

that carry a similar GEP 34. Two independent AML cohorts were used to train and evaluate the predictive value of the 

CEBPAdm signature in terms of sensitivity and specificity. A predictive signature was created, containing 25-probesets 

by using a logistic regression model with Lasso regularization (Figure 3B and Supplementary material Table S2) 213,214, 

which selects discriminative probesets between the classes, CEBPAdm (n=26) and all other AML cases, CEBPAwt and 

CEBPAsm (n=494). Subsequently, a classifier was trained on the entire HOVON-SAKK cohort based on a two class 

approach; 26 CEBPAdm versus 494 cases (CEBPA
wt 

and CEBPA
sm

). This trained classifier subsequently classified 16 

candidate CEBPAdm cases (Supplementary material Table S3) in the AMLSG-cohort out of 154 AML cases (16 CEBPAdm, 

6 CEBPAsm and 132 CEBPAwt: Supplementary material Table S1). Among the CEBPAdm cases were 5 cases with either 

homozygous N- or C-terminal CEBPAdm mutations, and a CEBPAdm patient with a germline C-terminal mutation. This 

approach showed perfect sensitivity and specificity (both 100%, Figure 3C). In addition, we performed a classification 

between CEBPA
dm

, CEBPA
sm

, and CEBPA
wt 

to infer, if we were able to accurately classify CEBPA
sm 

cases. We observed 
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that all CEBPA
sm

 cases were classified as CEBPA
wt

, thus CEBPA
sm

 cases did not have a consistent gene expression 

pattern and were different from the CEBPA
dm group.  

DISCUSSION 

Here, we established the value of CEBPAdm mutation in a large cohort of CN-AML patients from AMLSG and HOVON-

SAKK treatment trials. Applying dHPLC and whole-gene sequencing, we detected 91 (7.7%) double CEBPA and 60 

(5.1%) single CEBPA mutations among 1182 patients. In multivariate analyses, we demonstrate that the presence of 

CEBPAdm but not CEBPAsm is an independent factor for favorable outcome in AML, which confirms previous findings 

reported in studies with relatively small cohorts 35,45,46,48. 

Concurrent mutations were significantly less frequent in CEBPAdm compared with CEBPAsm AML. This was true for 

FLT3ITD and in particular for NPM1mutant that were virtually not present among CEBPAdm cases, a finding that is 

consistent with previously published data 47.  

Compared to previous studies 35,45-48, and the large number of cases, we were able to evaluate the prognostic impact 

of the CEBPA mutational status in the context of the FLT3/NPM1
 
genotypes. Among CEBPAsm AML, the four combined 

genotypes showed similar trend with regard to outcome as compared with CEBPAwt AML (Figure 2B and 2C). 

Nevertheless, we observed a higher outcome (not significant) for all CEBPAsm FLT3/NPM1 genotypes compared to the 

CEBPAwt genotypes, but these groups are relatively small. These findings, supported by data from multivariable 

analysis, strongly suggest that not the existence of CEBPAsm per se but rather the combined effects of CEBPAsm and 

FLT3ITD and/or NPM1mutant determine outcome in these AML patients.  

We have previously derived gene expression signatures that predict AML with inv(16), t(15;17) and t(8;21) with 100% 

accuracy. Here, we generated a refined GEP signature, consisting out of 25-probesets that predict CEBPAdm AML cases 

(six genes overlapped with the previous signature 35, indicated in supplementary). This signature showed sensitivity 

and specificity of 100% and has a better predictive power than the CEBPAdm signature that we defined before 35. In 

fact, in contrast to the previous signature, the new signature also discriminates CEBPAdm from AML with 

hypermethylation of the proximal promoter region of CEBPA 34. Classification results were not affected by 

homozygous N- or C-terminal CEBPAdm mutations or those due to germline mutation. Since this 25-probeset signature 

was optimized for classification it does not necessarily provide insight into the biological meaning of CEBPAdm 

mutations. 

Currently, nucleotide sequencing is used as the gold standard for the identification of CEBPA mutations. Due to the 

much higher effort of gene expression profiling this technique should not be considered as a primary diagnostic tool 

in AML. However, GEP can be confirmatory, especially in cases where the CEBPA gene appears difficult to sequence. 

More importantly, GEP provides relevant insights in the biology of the disease and the affected signaling pathways 

and therefore allows further classification/refinement of AML.  
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Finally, we evaluated the frequency of CEBPA germline mutations in this large cohort of CEBPA-mutated cases. Among 

71 mutated patients, 5 revealed germline mutations. Four of these cases developed CEBPAdm AML, i.e., these cases 

acquired a mutation in the second allele. This finding is in line with previous data 215,216. Interestingly, we for the first 

time identified three C-terminal germline mutations. Two of these C-terminal mutated germline cases acquired a 

second CEBPA mutation at the time of AML diagnosis. In GEP analysis both cases clustered within the CEBPAdm group 

and were classified as a CEBPAdm, providing evidence that these C-terminal sequence variations are mutations rather 

than polymorphisms. All three C-terminal germline mutations were predicted to be damaging for the function and 

the structure of the protein. 

In the current World Health Organization (WHO) classification AML, “AML with mutated CEBPA” has been designated 

as a provisional disease entity in the category “AML with recurrent genetic abnormalities”. Based on our data obtained 

from a large patient cohort together with findings from previous reports we propose that CEBPAdm AML should be 

clearly distinguished from CEBPAsm AML and that only “AML with CEBPAdm” should be considered as an independent 

entity in the classification of the disease. 
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Figure 1. Distribution of concurrent mutations in CEBPAdm and CEBPAsm patients. Columns represent patients and rows 

the genotypes FLT3TKD, FLT3ITD and NPM1mutant (black), wild-type (white) or missing (grey). The in-frame insertion or 

deletion in bZIP and N-terminal truncation mutations in CEBPA are highlighted in black.  

 

Figure 2. Kaplan-Meier survival curves of overall survival. (A) Kaplan-Meier survival curves for overall survival (OS) 

among the three groups CEBPAdm, CEBPAsm and CEBPAwt. (B) Kaplan-Meier survival curves for OS of the four genotypes 

FLT3ITD/NPM1mutant, FLT3ITD/NPM1wt, FLT3wt/NPM1mutant, and FLT3wt/NPM1wt within the CEBPAsm group. (C) Kaplan-

Meier survival curves for OS of the four genotypes within CEBPAwt. The asterisk indicates the P-value for the global 

log-rank test. 
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Figure 3. Unsupervised analyses and classification results of candidate CEBPAdm cases with their gene expression profile 

and their molecular characteristics. (A) Pair-wise correlations between the 674 AML cases (Table S1). The cells in the 

visualization are colored by Pearson’s correlations values, depicting higher positive (red) or negative (blue) 

correlations, as indicated by the scale bar. CEBPAsm, CEBPAdm, CEBPAC-terminal mutation, CEBPAN-terminal mutation, CEBPAsilenced, 

together with inv(16), t(15;17) and t(8;21) cases are depicted on the diagonal with a red or blue colored bar. CEBPAC-

terminal mutation and CEBPAN-terminal mutation indicates the presence of homozygous mutations. (B) Candidate CEBPAdm 

patients and the unambiguous CEBPAsm patients. The expression levels are defined by the 25-probeset signature. The 

colors of the hierarchical clustering are relative to the mean. (C) Computed posterior probabilities, indicating the 

prediction of a CEBPAdm case, given the 25 predictive probeset signature: P(CEBPAdm | 25-probesets). The ordering of 

patients is based on the classification probabilities. The true labels (molecular characteristics) are depicted in (D). 

Black indicates the mutation status in CEBPA (CEBPAdm or CEBPAsm), NPM1 (NPM1mutant), or FLT3 (TKD or ITD), white 

represents no mutation in the particular patient and a missing value is depicted in grey. The asterisk indicates the 

germline CEBPAdm cases. 
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Table 1. Patient demographics and clinical and molecular characteristics of CEBPAwt, CEBPAsm, and CEBPAdm CN-AML 

cases. Number of cases (percentage), median, range, or missing values are indicated. WBC indicates white blood cell. 

*P < .05 computed using the Mann-Whitney U test (continuous variables) and 2-sided Fisher exact test (categorical 

variables). 

 

Table 2. Germline patient demographics and molecular characteristics. Characteristics of 5 of 71 (7%) CEBPA-mutant 

AML patients who carried CEBPA germline mutations. CBL indicates Casitas B-lineage lymphoma; KRAS, Kirsten Rat 

sarcoma; NRAS, neuroblastoma Rat sarcoma; RUNX1, runt-related transcription factor 1; and WT1, Wilms tumor 1. 

*Data according to GenBank accession no. Y11525. †Patients 98A-751, 07/04-268 (ULM_10), 98A-543, and 07/04-

48 (ULM_20) were screened for FLT3ITD, FLT3TKD, NPM1, NRAS, KRAS, WT1, RUNX1, and CBL mutations; patient 

BioID 769 was analyzed for FLT3ITD, FLT3TKD, and NPM1 mutations. 

CEBPA wt CEBPA sm P ,  CEBPA sm  vs CEBPA dm P ,  CEBPA dm  vs P ,  CEBPA sm  vs

Characteristic (n = 1031) (n = 60) CEBPA wt (n = 91) CEBPA wt CEBPA dm

Median age, years (range) 48 (16-60) 46 (18-60) 0.28  44 (16-60) 0.04* 0.66

Sex,  n (%) 0.79 0.74 0.74

Male 500 (48) 28 (47) 46 (51)

Female 531 (52) 32 (53) 45 (49)

WBC count,  x10 9/L 0.23 0.062 0.86

Median (range) 28 (0.2-372) 25 (1.1-345) 28 (1.5-262)

Missing 34 1 4

Platelet count,  x10 9/L 0.77 < 0.0001* < 0.0001*

Median (range) 65 (5-746) 62 (10-361) 38 (4-265)

Missing 40 3 4

Bone marrow blasts 0.83 0.53 0.76

Median (range) 80 (0-100) 80 (0-97) 78 (2-100)

Missing 80 7 4

Molecular abnormalities

FLT3 ITD, n (%) 347 (33.7) 18 (30) 1 7 (7.7) < 0.0001* 0.00015*

Missing 69 9 5

FLT3 TKD, n (%) 95 (9.2) 4 (6.7) 0.81 2 (2.2) 0.018* 0.2

Missing 48 6 3

NPM1 + , n (%) 560 (54.3) 21 (35) 0.018* 3 (3.3) 0 < 0.0001*

Missing 88 10 8

Patient ID
Age at 

diagnosis,  y

Germline 

mutation
Acquired mutation*

Additional 

mutation†

Familial 

AML

History CEBPA 

mutation

98A-751 28 338delC 1080insGAA None Yes CEBPA dm

07/04-268 (ULM_10) 25 307delG 1122_1123ins1075_1225 KRAS , WT1 Yes CEBPA dm

BioID 769 51 1096T>C 478_485del None No CEBPA dm

98A-543 33 1164G>A None FLT3 TKD, NPM1 No CEBPA sm

07/04-48 (ULM_20) 59 1036G>T 1086insAAG None No CEBPA dm
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Table 3. Multivariate analysis for overall survival (OS), event-free survival (EFS) and relapse-free survival (RFS) in CN-

AML. Stratified Cox's proportional hazard model for multivariable analyses of CEBPAdm and CEBPAsm as prognostic 

marker for overall survival, event-free survival and relapse-free survival. Analyses included 1182 cytogenetically 

normal acute myeloid leukemia (CN-AML) patients with age ≤ 60. Abbreviations: HR, hazard ratio; CI, confidence 

interval; FLT3ITD, FLT3 Internal Tandem Duplications; FLT3TKD, FLT3 Tyrosine Kinase Domain. 

*P-value ≤ 0.05 
α CEBPA status versus CEBPAwt 
β FLT3ITD versus no FLT3ITD mutation 
β FLT3TKD versus no FLT3TKD mutation 
β NPM1mutant versus no NPM1wt 
δ WBC count higher than 20x109/L versus lower than 20x109/L 
ϵ Age is used as continuous variable  

 

  

Variables HR 95% CI P -value

Overall survival

CEBPA smα 0.70 0.46 - 1.07 0.1

CEBPA dmα 0.36 0.23 - 0.55 < 0.0001*

FLT3 ITD β 1.78 1.49 - 2.14 < 0.0001*

FLT3 TKD β 0.84 0.61 - 1.15 0.28

NPM1 + β 0.56 0.46 - 0.67 < 0.0001*

WBC countδ, x109/L 1.35 1.12 - 1.62 < 0.0001*

Ageϵ 1.02 1.01 - 1.03 < 0.0001*

Event-free survival   

CEBPA smα 0.86 0.6 - 1.22 0.4

CEBPA dmα 0.41 0.29 - 0.57 < 0.0001*

FLT3 ITD β 1.56 1.33 - 1.84 < 0.0001*

FLT3 TKD β 0.8 0.6 - 1.07 0.13

NPM1 + β 0.45 0.39 - 0.53 < 0.0001*

WBC countδ, x109/L 1.27 1.08 - 1.5 0.003*

Ageϵ 1.01 1.01 - 1.02 0.003*

Relapse-free survival   

CEBPA smα 0.79 0.51 - 1.22 0.3

CEBPA dmα 0.55 0.38 - 0.79 0.001*

FLT3 ITD β 1.75 1.45 - 2.12 < 0.0001*

FLT3 TKD β 0.82 0.59 - 1.13 0.22

NPM1 + β 0.56 0.46 - 0.68 < 0.0001*

WBC countδ, x109/L 1.33 1.1 - 1.61 0.002*

Ageϵ 1.01 1 - 1.02 0.001*
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SUPPORTING MATERIAL 

CEBPA mutation screening 

Blast cells were purified using Ficoll-Hypaque (Nygaard, Oslo, Norway) centrifugation. Patients from the AMLSG-

cohort (n=989) has been identified by direct sequencing, allowing the detection of homozygous mutations whereas 

the The 193 patients from HOVON-SAKK cohort have been pre-screened by dHPLC as previously described 35. 

However, the C amplicon covering the region encoding the C-terminus of CEBPA was split into two smaller amplicons 

using two additional primers (C1B rev 5’-ACTTCTTGGCCTTGCCCGCG-3’ and C2 fw 5’-CCTCCGCGCGAGTGGCGGCA-3’). 

Amplicon C1 was generated using primer set C fw and C1B rev and amplicon C2 with primer set C2 fw and C rev. This 

dHPLC strategy using these 5 CEBPA amplicons (fragment, A, B, C, C1 and C2) has been validated on a cohort of 550 

AML cases. All known insertion/deletion and point mutants were detected. Mutations in CEBPA in AML patients from 

the AMLSG-cohort (N=989) have been identified by sequencing and confirmed by the above mentioned dHPLC 

strategy. 

Creation and evaluation of the CEBPAdm predictive signature  

For the classification procedures we used a logistic regression model with Lasso regularization 2, 3, which selects 

discriminative probesets between the classes, CEBPAdm (n=26) and 494 remaining cases (CEBPAwt and CEBPAsm) 

(HOVON-SAKK cohort). To determine the optimal signature (25-probesets, Figure 3B) we proceed with a 10-fold cross-

validation where we optimized the cross-validated likelihood. With this signature we were able to discriminate the 

CEBPAdm cases from CEBPAsm, CEBPAsilenced 4, and CEBPAwt cases. This 25-probeset signature showed overlap with six 

genes (DLC1, MARVELD1, NDFIP1, RAB13, RAB34, UMODL1) with the previous signature 1. More details about the 

derived 25-probesets can be found in Supplementary material Table S2.  

Furthermore, we inferred an optimal signature from the combined datasets (HOVON-SAKK and AMLSG-cohort). By 

increasing the number of training samples we introduce more information and therefore better estimations of the 

variance into the model. A downside is that no estimation of the test error could be inferred. For this reason we 

subject ourselves to the use of estimated statistics. First, we make use of the globaltest 5 which has the following null 

hypothesis: 

H0: There is no information/pattern in the given data related to the outcomes (i.e. class labels). 

When applied to the HOVON-SAKK and AMLSG-cohort, the null hypothesis can clearly be rejected (P= 2.6x10-18, P= 

7x10-7 respectively). Finally, the globaltest is applied to the combined dataset and showed that the addition of the 

AMLSG-cohort introduced valuable information with respect to the classification of CEBPAdm (P= 2.1x10-32). Using 10-

fold cross-validation, we determined an optimal signature containing 36 probesets (Supplementary material Table S4) 

which attained a slightly lower estimated test error (.014 instead of .018), based on the cross-validation of the training 

sample, when compared to the 25-probeset signature. 



129 
 

Figure Legends 

 

Figure S1. Kaplan-Meier survival curves of HOVON-SAKK and AMLSG-cohort. Kaplan-Meier survival curves for OS (A) 

and EFS (B) based on 193 and 989 patients for HOVON- SAKK- and AMLSG-cohort respectively. Log-rank test was 

assessed to indicate the significance between the two cohorts. 

 

Figure S2. Kaplan-Meier survival curves of HOVON-SAKK and AMLSG-cohort with respect to therapy. Kaplan-Meier 

survival curves for OS (A) and EFS (B) based on 93 and 341 patients who were treated with autologous or allogeneic 

hematopoietic stem cell transplantation in HOVON-SAKK- and AMLSG-cohort respectively. Log-rank test was assessed 

to indicate the significance between the two cohorts with respect to therapy. 
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Figure S3. Kaplan-Meier survival curves of EFS and RFS. (A) and (D): Kaplan-Meier survival curves of EFS and RFS are 

shown for the three groups: CEBPAdm, CEBPAsm and CEBPAwt. Stratified log-rank test was assessed to indicate the 

significance between the different groups. (B) and (E): Kaplan-Meier survival curves of EFS and RFS for the CEBPAsm 

group by creating four subgroups: FLT3ITD/NPM1mutant, FLT3ITD / NPM1wt, FLT3wt/ NPM1mutant, and FLT3wt/ NPM1wt. Log-

rank test was assessed to indicate the significance between the FLT3wt/ NPM1wt groups. (C) and (F): Kaplan-Meier 

survival curves of EFS and RFS within the CEBPAwt group after creating the same subgroups. Log-rank test was assessed 

to indicate the significance between the composite genotypic FLT3/NPM1 groups. The asterisk indicates the P-value 

for the global log-rank test. 
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Figure S4. Kaplan-Meier survival curves of N-terminal, C-terminal CEBPAsm and N+C CEBPAdm. Kaplan-Meier survival 

curves for OS among the groups: N-terminal CEBPAsm (n=47), C-terminal CEBPAsm (n=13), N+C terminal CEBPAdm (n=82) 

and CEBPAwt (n=1031). Nine cases (homozygous CEBPAdm) are excluded. Log-rank test was assessed to indicate the 

significance between the different groups. 

 

Figure S5 - Assessing significance of the detected clusters. With the use of unsupervised clustering (using Pearson’s 

correlation coefficient) on 776 probesets, we observed that the groups; inv(16), t(15;17), t(8;21) and CEBPAdm form 

unique clusters whereas CEBPAsm did not. To assess the significance within the GEP cluster compared to AML cases 
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with any of these aberrations (rest-group), we used the Mann- Whitney-U test. High correlation is observed in (B): 

inv(16), (C): t(8;21), (D): CEBPAdm and (E): t(15;17) (on average: .42, .49, .35 and .49 respectively) and differed 

significantly between the AML cases with any of these aberrations (P<.0001). Low correlation within the cluster is 

observed for CEBPAsm (A) (on average: .15) and did not differ significantly from cases without CEBPAsm (P=.12). 

 

Table S1. Molecular data and Gene Expression Profiles. Data originates from the Erasmus University Medical Center 

(HOVON-SAKK cohort) and the University of Ulm (AMLSG-cohort). Molecular data of 1182 CN-AML patients with age 

≤ 60 is determined with a mutational screening of gene CEBPA. Gene Expression Profiles of 674 patients is derived 

using Affymetrix (Santa Clara, CA, USA) HGU133Plus 2.0 GeneChips. 

 

Table S2. 25-probeset predictive signature. The 25-probeset predictive signature is created using the logistic regression 

model with Lasso regularization, which determined the discriminative probesets between the classes, CEBPAdm (n=26) 

versus no CEBPAdm (n=494) (HOVON-SAKK). CEBPAwt; CEBPA wild-type, CEBPAdm; CEBPA double mutation, Probesets; 

 HOVON-SAKK cohort AMLSG-cohort Total

Molecular data 193 989 1182

CEBPA dm 18 (9.3%) 73 (7.4%) 91 (7.7%)

CEBPA sm 6 (3.1%) 54 (5.5%) 60 (5.1%)

GEP data 520 154 674

CEBPA dm 26 (5%) 16 (10.4%) 42 (6.2%)

CEBPA sm 12 (2.3%) 6 (3.9%) 18 (2.6%)

Probe sets Gene names Regr.coef.  CEBPA wt Regr.coef.  CEBPA dm

204039_at CEBPA -0.57251 0.57251

210762_s_at DLC1 -0.27537 0.27537

223095_at MARVELD1 0.19285 -0.19285

1553183_at UMODL1 -0.16304 0.16304

214651_s_at HOXA9 0.13178 -0.13178

1555630_a_at RAB34 0.13111 -0.13111

222423_at NDFIP1 0.12159 -0.12159

203305_at F13A1 0.11138 -0.11138

202252_at RAB13 0.10715 -0.10715

209686_at S100B -0.09809 0.09809

211709_s_at CLEC11A 0.08409 -0.08409

34210_at CD52 0.07837 -0.07837

206698_at XK -0.07267 0.07267

205624_at CPA3 0.06188 -0.06188

201161_s_at CSDA 0.05761 -0.05761

219463_at C20orf103 -0.04653 0.04653

201427_s_at SEPP1 0.03573 -0.03573

223708_at C1QTNF4 -0.03452 0.03452

238021_s_at hCG-1815491 0.02297 -0.02297

220010_at KCNE1L -0.02197 0.02197

210387_at HIST1H2BG -0.0125 0.0125

210116_at SH2D1A 0.01169 -0.01169

202242_at TSPAN7 -0.00961 0.00961

212775_at OBSL1 0.0094 -0.0094

201841_s_at HSPB1//MEIS3 0.00725 -0.00725
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the 25 selected probesets, Gene names; the complementary gene names for the selected probesets, Regr.coef.; 

Regression coefficient derived from the Lasso procedure for the CEBPAwt and CEBPAdm cases. 

 

Table S3. Classification results. Abbreviations: True label; CEBPAsm and CEBPAdm are determined using sequencing and 

denaturing high performance liquid chromatography (dHPLC), Sample ID: Sam- ple identification number, P(CEBPAwt 

|25-probesets): probability that sample ID is classified as CEBPAwt given the 25-probeset predictive signature, 

P(CEBPAdm |25-probesets): probability that sample ID is classified as CEBPAdm given the 25-probeset predictive 

signature. CEBPAwt; CEBPA wild-type, CEBPAdm; CEBPA double mutation, CEBPAsm; CEBPA single mutation. 

True label Sample ID P (CEBPA wt |25 probe sets) P (CEBPA dm |25 probe sets)

CEBPA sm ULM 001 0.99995 0.00004

CEBPA sm ULM 002 0.99985 0.00014

CEBPA sm ULM 003 0.99969 0.0003

CEBPA sm ULM 004 0.99943 0.00056

CEBPA sm ULM 005 0.99939 0.0006

CEBPA sm ULM 006 0.98616 0.01383

CEBPA dm ULM 007 0.31343 0.68656

CEBPA dm ULM 008 0.19452 0.80547

CEBPA dm ULM 009 0.12677 0.87322

CEBPA dm ULM 010 0.11421 0.88578

CEBPA dm ULM 011 0.10167 0.89832

CEBPA dm ULM 012 0.07047 0.92952

CEBPA dm ULM 013 0.06327 0.93672

CEBPA dm ULM 014 0.06322 0.93677

CEBPA dm ULM 015 0.06044 0.93955

CEBPA dm ULM 016 0.05167 0.94832

CEBPA dm ULM 017 0.04757 0.95242

CEBPA dm ULM 018 0.02838 0.97161

CEBPA dm ULM 019 0.02626 0.97373

CEBPA dm ULM 020 0.01683 0.98316

CEBPA dm ULM 021 0.01048 0.98951

CEBPA dm ULM 022 0.0054 0.99459
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Table S4. 36 probeset predictive signature. The 36 probeset predictive signature is created using the logistic regression 

model with Lasso regularization, which determined the discriminative probesets between the classes, CEBPAdm (n=42) 

versus no CEBPAdm (n=632) (HOVON-SAKK and AMLSG-cohort). CEBPAwt; CEBPA wild-type, CEBPAdm; CEBPA double 

mutation, Probesets; the 36 selected probesets, Gene names; the complementary gene names for the selected 

probesets, Regr.coef.; Regression coefficient derived from the Lasso procedure for the CEBPAwt and CEBPAdm cases. 

 
 

 

 

 

Probe sets Gene names Regr.coef. CEBPA wt Regr.coef. CEBPA dm

202007_at NID1 0.01636 -0.01636

202018_s_at LTF -0.00318 0.00318

202252_at RAB13 0.06454 -0.06454

202382_s_at GNPDA1 0.02519 -0.02519

203305_at F13A1 0.12536 -0.12536

203860_at PCCA 0.04591 -0.04591

204039_at CEBPA -0.08967 0.08967

206210_s_at CETP -0.0517 0.0517

209686_at S100B -0.02699 0.02699

209905_at HOXA9 0.06141 -0.06141

210298_x_at FHL1 0.01507 -0.01507

210762_s_at DLC1 -0.00626 0.00626

211209_x_at SH2D1A 0.05816 -0.05816

211341_at LOC100131317 // POU4F1 -0.00442 0.00442

211560_s_at ALAS2 -0.02554 0.02554

211682_x_at UGT2B28 -0.07277 0.07277

211709_s_at CLEC11A 0.06346 -0.06346

212062_at ATP9A 0.00432 -0.00432

214146_s_at PPBP 0.07145 -0.07145

214651_s_at HOXA9 0.1766 -0.1766

214835_s_at SUCLG2 0.10251 -0.10251

215772_x_at SUCLG2 0.0422 -0.0422

217800_s_at NDFIP1 0.00914 -0.00914

219463_at C20orf103 -0.09278 0.09278

220807_at HBQ1 -0.03991 0.03991

222288_at PPP4R2 0.0637 -0.0637

222463_s_at BACE1 0.00838 -0.00838

223708_at C1QTNF4 -0.10196 0.10196

224710_at RAB34 0.34355 -0.34355

229638_at IRX3 0.11367 -0.11367

235099_at CMTM8 0.01472 -0.01472

235289_at EIF5A2 -0.00758 0.00758

235438_at CYP7B1 -0.23982 0.23982

235818_at VSTM1 -0.05598 0.05598

239791_at LOC100130740 0.08214 -0.08214

34210_at CD52 0.13627 -0.13627
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KEY POINTS:  

 In AML with bialleleic CEBPA-mutant relapse-free survival was improved by allogeneic and 

autologous hematopoietic stem cell transplantation.  

 In relapsed patients second complete remission rate was high and survival was favorable after an 

allogeneic transplantation. 

ABSTRACT 

The clinical value of allogeneic and autologous hematopoietic stem cell transplantation (alloHSCT, autoHSCT) in the 

subtype of acute myeloid leukemia (AML) with double-mutant CEBPA (CEBPAdm) has remained unsettled. 

Among 2983 patients analyzed for CEBPA mutational status (age 18-60 years) treated on four HOVON/SAKK and three 

AMLSG protocols; 124 had AML with CEBPAdm and achieved first complete remission (CR1). Evaluation of the clinical 

impact of alloHSCT and autoHSCT versus chemotherapy was performed by addressing time dependency in the 

statistical analyses.  

Thirty-two patients proceeded to alloHSCT from a matched related (MRD, n=29) or matched unrelated donor (MUD, 

n=3) and 20 to autoHSCT in CR1; 72 received chemotherapy. Relapse-free survival (RFS) was significantly superior in 

patients receiving an alloHSCT or autoHSCT in CR1 as compared to chemotherapy (p<0.001), whereas overall survival 

(OS) was not different (p=0.12). Forty-five patients relapsed. Of 42 patients treated with reinduction therapy, 35 

achieved a second CR (83%) and most (n=33) patients received an alloHSCT (MRD, n=11; MUD, n=19; haplo-identical 

donor, n=3). Survival of relapsed patients measured from date of relapse was 46% after 3 years.  

Adult AML patients with CEBPAdm benefit from alloHSCT and autoHSCT; relapsed patients still have a favorable 

outcome after reinduction followed by alloHSCT. 
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INTRODUCTION 

Acute myeloid leukemia with mutated CCAAT/enhancer binding protein alpha (AML with mutated CEBPA) gene 

represents a provisional disease entity in the current World Health Organization classification in the category “AML 

with recurrent genetic abnormalities”.1,2 However, multiple studies demonstrated that AML with double-mutant 

CEBPA (CEBPAdm) could be clearly distinguished from AML with single mutant CEBPA with respect to biological and 

prognostic features.3-9 In the majority of AML with CEBPAdm, one allele is affected by an N-terminal mutation and the 

second allele carries the mutation in the C-terminus (bZIP), whereas in AML with single mutant CEBPA, mutations 

occur either in the N-terminus or in the C-terminus of the gene. The previously shown favorable impact of mutant 

CEBPA in various independent comprehensive studies on prognosis9 has more recently been specifically related to the 

subtype of AML with CEBPAdm.3-8 

The incidence of AML with mutated (single and double) CEBPA ranges from 7.5% to 11% of all AML patients and from 

about 13% to 18% in AML exhibiting a normal karyotype.3-8,10-13 Furthermore, the incidence of AML with mutated 

CEBPA in patients above the age of 60 years range from 8.5%14 to 18%.15 

Young and middle aged adults (age 18-60 years) with AML and mutated CEBPA and especially those with CEBPAdm 

have a comparatively high probability of achieving a complete remission after standard “7+3” induction therapy with 

remission rates exceeding 90%.6,8 Treatment outcome data revealed a favorable prognosis with an overall survival 

after 5-years ranging between 50% and 70%3-8 including different types of consolidation therapy with intensive 

chemotherapy, autologous and allogeneic hematopoietic stem cell transplantation (autoHSCT and alloHSCT). 

However, relapse still remains the major cause of treatment failure occurring mainly within the first 2 years after 

achieving a complete remission (CR). This has for instance raised the question whether autoHSCT and alloHSCT in first 

CR should be recommended in patients with this genetic abnormality. So far, analyses according to the type of 

postremission treatment in CEBPAdm AML patients have not become available mainly due to limited patient numbers 

precluding informative statistical analyses. Thus, it remains still unclear whether the favorable prognosis of AML with 

CEBPAdm can be attributed to the mutation itself irrespective of the type of applied postremission therapy (i.e. 

prognostic marker) or whether the favorable prognosis is the result of a high rate of cure after autoHSCT and alloHSCT 

in first CR and after relapse (i.e. predictive marker). Informative insight into these factors could be of direct clinical 

relevance as it may guide treatment decisions on the application of autoHSCT and alloHSCT already in first CR or 

alternatively to hold back on these approaches and reserve the option especially of an alloHSCT as salvage only in 

relapsed patients. To address this question, the Dutch-Belgian-Swiss HOVON/SAKK and the German-Austrian AMLSG 

leukemia cooperative groups performed in a joint effort an individual-patient based meta-analysis focusing on the 

AML CEBPAdm subtype in first CR. The aim was to evaluate different postremission strategies with major focus on the 

comparison between alloHSCT, autoHSCT and intensive chemotherapy in a large series of CEBPAdm AML patients in 

first CR. Furthermore, in an integrated approach we also included treatment after relapse and its impact on outcome. 
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PATIENTS AND METHODS  

Patients and Treatment 

All patients included in this study were recruited within two major leukemia cohorts. AML patients from Cohort I 

(n=3450) were enrolled in the Dutch-Belgian-Swiss Hemato-Oncology Cooperative Group (HOVON/SAKK) trials 

HOVON04(A), HOVON29/SAKK30/9517-19, HOVON42(A)/SAKK30/00 and HOVON92/SAKK30/0818-20 (www.hovon.nl). 

Patients received two successive cycles of anthracycline-cytarabine and amsacrine-cytarabine based remission 

induction chemotherapy and, subsequently, in first CR consolidation chemotherapy, autoHSCT after myeloablative 

therapy according to a randomization against chemotherapy and depending on an adequate stem cell collection20, or 

alloHSCT following mainly myeloablative conditioning depending on the availability of a matched related donor. 

Cohort II (n=2274) comprised patients who were enrolled in the German-Austrian AML Study Group (AMLSG) trials 

AML HD93,21 AML HD98A22 and AMLSG 07-04 (ClinicalTrials.gov Identifier: NCT00151242). Consistently throughout 

all AMLSG trials, patients with AML exhibiting an intermediate-risk karyotype with mutant CEBPA were intended to 

receive, i) a double induction therapy with ICE (idarubicin, cytarabine, etoposide) and, ii) repetitive cycles of high-dose 

cytarabine based consolidation therapy or, if an HLA-matched family donor was available, an allogeneic HSCT after a 

myeloablative conditioning regimen.  

Patients were selected from the total cohort, if they fulfilled all three of the following criteria, i) normal karyotype or 

intermediate-risk karyotype according to ELN criteria2, ii) CEBPAdm, iii) CR after induction therapy. The selection 

process is illustrated in Figure 1. In 90% (5147/5724) of the patients information on cytogenetics was available. In 

these 5147 patients the CEBPA mutation status was available in 2983 (58%); of those 137 exhibited a CEBPAdm in the 

context of a normal karyotype or intermediate-risk cytogenetics (4.6%).One-hundred-twenty-four achieved a first CR 

after induction therapy within the different protocols (90.5% CR rate) and were included into this study.  

All patients provided written informed consent in accordance with the Declaration of Helsinki. All trials were approved 

by the Institutional Review Boards. CEBPA mutational status was identified by denaturing High-Performance Liquid 

Chromatography (dHPLC), PCR amplification followed by direct sequencing or fragment-length analysis (GeneScan) 

and subsequent sequence analysis in any positive cases.4,5 Cytogenetics and molecular analyses were performed as 

described before.8,10,23-25 

Statistical analysis 

The definition of CR and survival endpoints such as overall survival (OS), cumulative incidence of relapse (CIR) and 

death (CID), as well as relapse-free survival (RFS) were based on the recommended consensus criteria.2 Actuarial 

estimates were used for assessment of the median follow-up for survival. Patient characteristics were compared by 

the Kruskal-Wallis test (continuous variables) and the Fisher’s exact test (categorical variables). Cumulative incidence 

of relapse (CIR) and death (CID) were analyzed according to the method of Gray.26 To address the time dependence 
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of the variables alloHSCT and autoHSCT, the graphical representation according to the method of Simon and Makuch 

was used as well as the Mantel-Byar test, as appropriated statistical approach in univariable analyses.27,28 For 

multivariable analyses an extended Cox regression model was used according to the method of Andersen and Gil.29 

For all analyses, a P-value was considered statistically significant if it was less or equal than .05. All statistical analyses 

were performed using the statistical software Stata Statistical Software, Release 12. 

RESULTS  

Demographics and clinical baseline characteristics of the study population 

In this cooperative individual-patient data meta-analysis, 124 CEBPAdm AML patients were included with normal 

karyotype or intermediate-risk cytogenetics, age between 18 and 60 years, and first CR after induction therapy. The 

patients were selected from the total study population treated in HOVON/SAKK and AMLSG prospective multicenter 

clinical trials recruited between 1987 and 2009 (Figure 1). Baseline characteristics and demographics for the total 

cohort are shown in Table 1.  

No significant difference in overall survival was seen between HOVON/SAKK and AMLSG CEBPAdm patient cohorts 

(n=50 vs. n=74, Cox test, P=.36); molecular and clinical variables were comparable between HOVON/SAKK and AMLSG 

CEBPAdm patient cohorts with exception of platelet counts (P=.02, lower in AMLSG) and bone marrow blasts (P<.0001, 

lower in HOVON/SAKK).  

Postremission therapy, Cumulative Incidence of Relapse (CIR) and Death in CR (CID) in CEBPAdm patients 

Distribution of postremission treatment modalities in the 124 patients was as follows: alloHSCT, n=32 (matched 

related donor [MRD] n=29, matched unrelated donor [MUD] n=3); autoHSCT, n=20; intensive chemotherapy, n=72. 

The median time interval from diagnosis to achievement of first CR was 1.1 months (range 0.36 - 4.11) with a trend 

(p=0.053) for a longer interval in patients who received an autoHSCT as postremission treatment (median, 1.25 

months) compared to those who received an alloHSCT (median, 1.1 months) or chemotherapy (median, 1.1 months). 

The median time interval from first CR to alloHSCT and autoHSCT was 4.0 months (range 0.8-6.5) and 2.3 months 

(range 0.4-6.2), respectively.  

In total, 45 relapses (one after alloHSCT, 5 after autoHSCT, and 39 after intensive chemotherapy) and 19 treatment-

related deaths (7 after alloHSCT, 3 after autoHSCT, and 9 after intensive chemotherapy) after a median time measured 

from CR1 of 10.8 months (range, 4.4-61) and 15 months (range, 1.2-144) occurred. This leads to estimates of CIR and 

CID after 5-years of 3% (SE 3%) and 24% (SE 8%) for alloHSCT, 27% (SE 11%) and 13% (SE 9%) for autoHSCT, and 58% 

(SE 6%) and 10% (SE 4%) for intensive chemotherapy, respectively.  

Treatment after relapse 
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After relapse, 41 patients received intensive reinduction therapy, one patient had repetitive cycles of subcutaneous 

azacitidine and three patients were treated with supportive care only. The second CR rate in all relapsed patients was 

78% (35/45) and in those receiving reinduction therapy (including azacitidine) 83% (35/42). Thirty-three patients 

received an alloHSCT (MRD n=11, MUD n=19, haplo-identical donor n=3) after reinduction therapy. At the time of 

alloHSCT, 28 patients achieved a second CR after reinduction therapy, four had refractory disease and one patient 

who relapsed after alloHSCT in first CR, received a stem cell boost from the same donor in second CR. Only one patient 

was treated with an autoHSCT after relapse.  

Survival analysis 

The median follow-up time of patients still alive at the date of last contact was 62 months. RFS and OS of the whole 

CEBPAdm patient cohort after 5-years were 48% (95%-CI, 38-57%) and 63% (95%-CI, 53-72%), respectively. There was 

no difference in RFS (p=0.24) and OS (p=0.87) between patients exhibiting a normal karyotype and those with 

intermediate-risk karyotypes (Table 2, Figure 2). Based on the Mantel-Byar test including alloHSCT and autoHSCT 

applied in first CR as time dependent variables, RFS is significantly superior in patients receiving an HSCT (p<0.001), 

with significant differences in favor of alloHSCT and autoHSCT as compared to intensive chemotherapy (p<0.001 and 

p=0.019, respectively) (Figure 3a). Multivariable analysis based on an Andersen-Gill model including time dependent 

postremission strategy as well as pretreatment values (Table 1) of WBC, platelets, BM-blast percentage, age and 

karyotype (normal versus abnormal) revealed that alloHSCT (HR, 0.23; p<0.001) and autoHSCT (HR, 0.37; p=0.012) 

applied in first CR had independently a favorable prognostic impact with regard to RFS (Table 3). However, apparently 

due to a high second CR rate after salvage therapy, the superior RFS after alloHSCT and autoHSCT did not translate 

into a better OS in univariable (p=0.12) (Figure 3b) and multivariable analyses (Table 4). 

In 45 relapsed patients OS measured from the date of relapse was 46% (95%-CI, 30-60%) after 3 years (Figure 4). All 

patients surviving more than 2 years after first relapsed had undergone an allogeneic HSCT (n=15, Figure 4). 

DISCUSSION  

This report focuses on the evaluation of the clinical impact in CEBPAdm patients of alloHSCT, autoHSCT in comparison 

to intensive consolidation therapy in first CR as well as on the impact of reinduction chemotherapy and alloHSCT after 

relapse. To this attempt, we report on 124 adults with AML and a normal karyotype or intermediate-risk karyotypes 

that harbor a CEBPAdm, and are aged 60 years and below. Only one relapsed patient received an autoHSCT in second 

CR and therefore we were not able to evaluate the clinical impact of autoHSCT after relapse. Our results clearly show 

that adult AML patients with the CEBPAdm genotype significantly benefit from alloHSCT and autoHSCT in first CR with 

respect to RFS.  

In recent years it has become apparent that the favorable prognosis of CEBPA gene mutations largely depends on the 

presence of the CEBPAdm mutation type. At the molecular level AML with the CEBPAdm compared to AML with CEBPA 
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single mutation type is associated with a lower frequency of coexisting NPM1 mutations and FLT3 internal tandem 

duplications (ITD).6,8 Therefore, several investigators have recently suggested to restrict the provisional WHO 2008 

entity AML with CEBPA mutations to those with biallelic mutations.4-8 As a direct consequence the incidence of this 

AML entity defined by CEBPAdm decreases by about 40%5,8 to a frequency of 3% to 6% of all AML cases. The low 

frequency of CEBPAdm explains why comparative analyses with regard to different postremission strategies such as 

alloHSCT, autoHSCT and intensive chemotherapy have so far not been performed. Beside the recommended ELN-risk 

category2 AML with CEBPA we also included into the analyses the group of intermediate-risk karyotypes which 

includes approximately 30% of patients with chromosomal abnormalities, in particular interstitial deletion 9q30 and 

11q (Table 2) instead of only patients with AML exhibiting a normal karyotype. This approach is supported by the 

similar favorable outcome in AML with CEBPAdm with and without normal karyotype in uni- and multivariable analyses 

presented here (Figure 2). Thus, these data add evidence that AML with CEBPAdm may be regarded as a distinctive 

AML entity irrespective of additional chromosomal abnormalities categorized within the cytogenetically defined 

intermediate-risk group.2 

In the current analyses we started with a total cohort of 5724 patients from which in 5147 a karyotype and of those 

in 2983 the CEBPA mutational status was available. This large cohort was required to finally achieve a sufficiently high 

number of 124 AML patients with CEBPAdm in first CR representing the basis of our analyses. This approach underlines 

that large cooperative intergroup meta-analyses are warranted to evaluate treatment effects with acceptable 

statistical power in rare but clinically highly relevant patient subsets.  

Our patients were treated in seven different treatment trials with in part changing therapeutic concepts over time. 

Thus, it is impossible to apply the rigorous statistical standards for postremission treatment allocation such as up-

front or the so called genetic randomization. Instead, we applied statistical methods that have all in common that 

group allocation is implemented as a dynamic process over time with a transition from the no-transplant group to the 

alloHSCT or autoHSCT groups at the time-point of HSCT. This approach reduces the time-to-treatment bias and 

provides a solid statistical methodology in situations where simple Kaplan-Meier plots and log-rank tests as well as 

simple Cox regression models are no longer valid. However, to further reduce selection bias towards HSCT in first CR 

our univariable comparisons were complemented by multivariable Andersen-Gil regression models addressing again 

the time-to-treatment bias29 by including important pretreatment characteristics.  

By using methods that adjust for the time from CR to consolidation we were able to show a clear superior RFS 

(p<0.001) in patients who received an alloHSCT or an autoHSCT in first CR of 73% (95%-CI, 54-86%) and 60% (95%-CI, 

33-79%) after 5-years, respectively. These survival rates compare favorably to the RFS of 32% (95%-CI, 21-45%) in 

patients receiving intensive chemotherapy only. A similarly good outcome has also been reported for other AML 

entities categorized into the favorable ELN-risk group such as core-binding factor AML (CBF-AML) including AML with 

inv(16) or t(16;16) and AML with t(8;21) after both alloHSCT and autoHSCT.31,32 However, our results suggest that RFS 

after intensive chemotherapy is substantially lower for AML with CEBPAdm as compared to that of CBF-AML.33,34 
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Nevertheless, due to a high second CR rate in reinduced relapsed patients with more than 80% and a high proportion 

of patients proceeding to an alloHSCT after relapse, the high relapse rate in the chemotherapy subgroup did not 

translate into a significant inferior OS. In fact, the high second CR rate and favorable survival after relapse observed 

in the study reported here are comparable to the survival probabilities observed in AML with inv(16).33,34 Based on 

these data, AML with CEBPAdm and AML with inv(16) or t(16;16) appear as two well-defined exceptions from the 

general notion that after relapse a second CR is rarely achieved.35 Therefore, instead of applying alloHSCT as the 

compelling option in first CR, an alternative and not unreasonable strategy would be to postpone the alloHSCT in first 

CR and keep the option of alloHSCT for salvage for the restricted fraction of patients after relapse.35,36 Indeed, our 

data supports both strategies, alloHSCT or autoHSCT in first CR versus intensive chemotherapy as consolidation in first 

CR and reinduction followed by alloHSCT in case of relapse. Of note, the good results in our study with autoHSCT are 

paralleled by those obtained in Core-binding factor AML31,32 indicating a specific chemo-sensitivity of these AMLs with 

favorable risk according to the ELN recommendations2 to dose escalation during consolidation therapy in first CR. 

Patients have to be well informed about the risks and consequences of alloHSCT and autoHSCT in first CR regarding: 

i) short37 and long38 term physical and psychological impairment, ii) infertility and a higher rate of treatment-related 

mortality (e.g. for alloHSCT we observed in our cohort 24% at 5-years), and iii) increased rates of transplantation-

related morbidity and mortality for alloHSCT when the latter is performed after relapse.16 Besides the survival 

considerations there are various other arguments that would favor the choice of an autoHSCT in first CR as compared 

to alloHSCT. Given the nearly identical RFS and OS rates after alloHSCT and autoHSCT the focus of outcome evaluations 

can be broadened to consider quality of life (QoL) aspects and late effects after transplantation as well as health 

economics, with a significantly better QoL and fewer late effects after autoHSCT compared to alloHSCT39 whereas 

data on health economics are very system specifiec.40 

In summary, our data provide novel clinical information that may be useful for refining the WHO 2008 classification 

and the ELN-risk categorization for the provisional entity AML with CEBPAdm in that beyond normal karyotype all 

intermediate-risk cytogenetics should be included. From a clinical perspective alloHSCT and autoHSCT performed in 

first CR were associated with comparatively excellent RFS and OS, whereas the reduced rate of RFS in patients 

receiving consolidation with intensive chemotherapy could be made up after relapse by a high rate of second CR 

followed by alloHSCT. Thus the marker CEBPAdm develops with respect to RFS to a predictive marker indicating 

superior RFS after autoHSCT and alloHSCT, but remains a prognostic marker with respect to OS. The pros and cons of 

alloHSCT and autoHSCT during first CR or, as an alternative option, alloHSCT after relapse have to be carefully 

considered and discussed with the patients with possible individual adaptation of treatment recommendations taking 

into account the patient’s personal context.  
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Figure 1. Flow chart on patient selection. Number of patients according to each selection step. 

 

Figure 2. Influence of karyotype abnormalities on outcome. Kaplan-Meier plots for the endpoints a) RFS and b) OS 

according to the karyotype (normal versus abnormal). 



147 
 

 

Figure 3. Influence of postremission treatment modality (alloHSCT, autoHSCT, chemotherapy) on RFS (Fig 3a) and OS 

(Fig 3b). Simon-Makuch plots for the endpoints a) RFS and b) OS according to type of postremission therapy; allo, 

allogeneic HSCT; auto, autologous HSCT; chemotherapy. 

 

Figure 4. Outcome of patients after relapse. Simon-Makuch plot for the endpoint OS, second CR rate after salvage 

remission induction therapy and treatment details for patients surviving longer than 2 years. 
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Table 1. Clinical and genetic characteristics of the total cohort and according to applied postremission therapy. 

Abbreviations: AML, acute myeloid leukemia; WBC: white blood cell count; FLT3ITD, FLT3 internal tandem duplication; 

NPM1+, nucleophosmin 1; Subheadings under “de novo AML” refer to French American British classification subtypes; 

wt, wild-type; neg, negative. 

 Total cohort Allo-HSCT Auto-HSCT no-HSCT P -value

Characteristics n=124 n=32 n=20 n=72

Age, years

    Median (range) 44 (16-60) 40 41 45 0.124

Sex, no. (%)

    Male 66 (53%) 21 (66%) 12 (60%) 33 (46%) 0.147

    Female 58 (47%) 11 (34%) 8 (40%) 39 (54%)

WBC, x 109/L

    Median (range) 32 (2-248) 16 (2-174) 36 (3-157) 34 (2-248) 0.228

    Missing 1 1

Platelets, x109/l

    Median (range) 41 (4-319) 39 (11.282) 47 (10-115) 40 (4-319) 0.421

    Missing 3 3

Bone marrow blasts, (%)

   Median (range) 75 (7-100) 71 (7-99) 77 (31-99) 75 (25-100) 0.535

    Missing 5 1 4

Type of AML, no. (%)

    De novo AML

    M0 6 (5%) 1 (3%) 5 (7%) 0.237

    M1 45 (36%) 10 (31%) 9 (45%) 26 (36%)

    M2 54 (44%) 16 (50%) 6 (30%) 32 (44%)

    M4 6 (5%) 2 (6%) 2 (10%) 2 (3%)

    M5 2 (2%) 1 (3%) 1 (5%)

    M6 1 (1%) 1 (5%)

    Unclassified 1 (1%) 1 (1%)

    Missing 9 (7%) 2 (6%) 1 (5%) 6 (9%)

Cytogenetics, no, (%)

    Normal karyotype 92 (74%) 21 (66%) 14 (70%) 57 (79%) 0.317

Molecular characteristics no., (%)

    FLT3 ITD 11 (9%) 5 (16%) 1 (5%) 5 (7%) 0.38

    NPM1 + 2 (2%) 1 (3%) 1 (1%) 0.67

    Missing 1 1
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Table 2. Abnormal karyotypes grouped according to leading aberrations. 

 

Table 3. Andersen-Gill model for the endpoint relapse-free survival. Abbreviations: HSCT hematopoietic stem cell 

transplantation; WBC, white blood cell count; % BM blasts, percentage bone marrow blasts. 

del(9q)

    46,XY,del(9)(q12q31)[20]

    46,XY,del(9)(q12q22),del(11)(q13q23)[21]

    46,XY,del(9)(q12q34),del(11)(p11p15)[12]/46,XY[4]

    46,XX,del(9)(q12q31~32)[26]/47,idem,+21[2]/46,XX[7]

    46,XX,del(9)(q1?2q3?2)[7]/46,XX[14]

    46,XY,del(9)(q13q22)[22]

    46,XY,del(9)(q13q22)[8]/46,XY[18]

    46,XY,del(9)(q13q34)[2]/46,XY[19]

    46,XY,del(7)(q22q32)[30]/46,XY,del(7)(q22q32),del(9)(q13q32)[2]

    46,XX,del(9)(q21q22)

    46,XX,del(9)(q22)[20]

    46,XY,del(9)(q22q34)[13]/46,XY[7]

    46,XY,del(9)(q22q34)[10]

    46,XY,del(9)(q22q34)[2]/46,XY[17]

    46,XY,del(9)(q22q34)[5]/47,XY,del(9)(q22q34),+21[5]/46,XY[1]

    46,XY,del(9)(q3?1)[2]/46,XY[38]

    46,XX,del(9)(q3?1) or del(9)(q22q34)[11]/46,XX[19]

del(11q)

    46,XX,del(11)(q13q25)[20]

    46,XY,del(11)(q14q25)[3]/46,XY[60]

    46,XY,del(11)(q21q23)[6]/46,XY[9]

    46,XY,del(11)(q21q23)[7]

other

    45,X,-Y[14]

    45,X,-Y[8]/46,XY[14]

    46,XX,del(1)(p32p34)[21]

    46,XX,del(7)(p13p15)[4]/46,XX[6]

    46,XX,iso(17)(q10)[10]/46,XX[11]

    47,XX,+5[7]/46,XX[16]

    47,XX,+10[18]/46,XX[2]

    47,XY,+10[20]

    47,XX,+21[22]

    47,XY,+21[6]/46,XY[9]

Prognostic markers*

HR 95%-CI P

Allogeneic HSCT 0.23 0.11– 0.51 <0.001

Autologous HSCT 0.37 0.17 - 0.80 0.012

Log10 (WBC) 1.4 0.77 – 2.56 0.27

Log10 (platelets) 0.81 0.40-1.66 0.57

% BM blasts (difference 10%) 0.94 0.82 – 1.08 0.4

Age (difference of 10 years) 0.86 0.68 – 1.08 0.2

Abnormal karyotype 0.73 0.38 – 1.40 0.35

RFS
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Table 4. Andersen-Gill model for the endpoint overall survival. Abbreviations: HSCT hematopoietic stem cell 

transplantation; WBC, white blood cell count; % BM blasts, percentage bone marrow blasts. 

 

  

Prognostic markers*

HR 95%-CI P

Allogeneic HSCT 0.5 0.21 – 1.17 0.11

Autologous HSCT 0.57 0.23 – 1.40 0.22

Log10 (WBC) 1.34 0.64 – 2.80 0.44

Log10 (platelets) 0.95 0.40 – 2.26 0.91

% BM blasts (difference 10%) 1.04 0.87 – 1.24 0.69

Age (difference of 10 years) 1.08 0.82 – 1.42 0.59

Abnormal karyotype 1.14 0.55 – 2.34 0.73

RFS
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Two Splice Factor Mutant Leukemia Subgroups Uncovered at the 

Boundaries of MDS and AML using Combined Gene expression 

and DNA-Methylation Profiling 

Erdogan Taskesen, Marije Havermans, Kirsten van Lom, Mathijs Sanders, Yvette van Norden, Eric Bindels, Remco 

Hoogenboezem, Marcel J.T. Reinders, Maria E. Figueroa, Peter J.M. Valk, Bob Löwenberg, Ari Melnick and Ruud Delwel 

KEY POINTS:  

 Splice factor mutant myeloid malignancies transcend the boundaries between AML and MDS.  

 Integrated analysis of as gene expression and DNA-methylation profiling in large leukemia cohort 

uncovers novel subtypes. 

ABSTRACT 

Mutations in splice factor (SF) genes occur more frequently in myelodysplastic syndromes (MDS) than in acute myeloid 

leukemias (AML). We sequenced cDNA from 7 human RAEB (refractory anemia with excess of blasts), 13 RAEB in 

transformation (RAEB-t) and 324 AML patients and determined the presence of SF-hotspot mutations in SF3B1, 

U2AF35, and SRSF2. SF-mutations were found in 2 RAEB, 5 RAEB-t and 28 AML cases. SF-mutant AMLs were older, 

showed lower white blood cell counts, lower marrow blast percentages and higher erythroblast percentages than SF-

wild-type AMLs. Besides the blast percentages, no differences were found between SF-mutant RAEB, RAEB-t and AML 

cases. This suggests that these SF-mutant malignancies may be considered as myeloid malignancies that transcends 

the boundaries of AML and MDS. An integrated analysis of gene expression (GEP) and DNA-methylation profiling 

(DMP) data revealed two unique patient-clusters highly enriched for SF-mutant AML/RAEB(T). The combined 

GEP/DMP signatures revealed one SF-mutant subset with an erythroid signature. The other SF-mutant cluster was 

enriched for NRAS/KRAS mutations and showed an inferior survival. We conclude that SF-mutant AML/RAEB(T) 

constitute a related disorder overriding the artificial separation between AML and MDS, and that SF-mutant 

AML/RAEB(T) is composed of two molecularly and clinically distinct subgroups.  

INTRODUCTION 

Myelodysplastic syndromes (MDS) are characterized by a deregulation of blood cell formation and frequently develop 

into acute myeloid leukemia (AML). MDS patients feature recurrent somatic mutations in multiple components of the 

RNA splicing machinery217-220. These mutations are frequently seen in the splice factor (SF) genes, SRSF2, U2AF35, 

ZRSR2, U2AF65, SF1, SF3B1, SF3A1 or PRPF40B217-219. Among the many non-recurrent missense mutations, eight 
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mutational hotspots were found, i.e. in U2AF35 (two hotspots), SRSF2 (one hotspot) and SF3B1 (five hotspots)217. 

Although, these SF-mutations have been reported to frequently associate with the presence of ring sideroblasts 

(RS)217,221, MDS without RS can harbor SF-mutations as well 217,218. Mutations in SF3B1 are strongly associated with 

refractory anemia with ring sideroblasts (RARS), whereas in MDS without RS no association with a specific mutation 

was observed217. Some of the SF-mutations also appeared to have prognostic relevance222-225. 

The French-American-British (FAB) classification for MDS and AML has been used to delineate the transitional zone in 

marrow and blood blast percentages that separate MDS and AML. RAEB is defined as an MDS with ≥5% but ≤20% 

blasts in the bone marrow and RAEB-t as ≥5% blasts in the blood, or bone marrow blasts >20% but <30%, or the 

presence of Auer rods226,227. RAEB is considered to be an MDS subtype closely related to AML, whereas RAEB-t is 

classified as AML according to the WHO228. Thus, the distinction between RAEB, RAEB-t and AML is arbitrary and 

molecular abnormalities have not provided a clear basis for the separation of AML and MDS biology. It is therefore 

possible that subsets of RAEB, RAEB-t and AML, in particular the ones with the same class of molecular abnormalities, 

such as splice factor (SF)-mutations would represent one common molecular leukemia subtype. We investigated in 

this study the distribution of eight hotspot SF-gene mutations217 in RAEB (N=7), RAEB-t (N=13) and AML (N=324) 

samples. The data revealed that splice factor (SF) mutant RAEB, RAEB-t and AML share highly similar phenotypes and 

suggest that these malignancies should be considered as one typical SF-mutant AML subset. 

AML subtypes with unique molecular defects, such as patients with recurrent chromosomal translocations t(8;21), 

t(15;17), inv(16), or with mutations in CEBPA or in NPM1 can be uncovered very specifically using gene expression 

profiling or DNA-methylation profiling (GEP18 or DMP58) data, derived from large AML patient cohorts18,24,44,121. 

Application of GEP or DMP in cohorts that also included RAEB and RAEB-t patient samples did not reveal distinctive 

gene expression or methylation patterns for these malignancies18 58. We neither obtained evidence of signatures that 

could define SF-mutant myeloid malignancies. Nonetheless, we hypothesize that SF-mutant myeloid disorders 

constitute a biological entity with distinct gene expression and methylation patterns. To address this, we developed 

an approach towards integrative analysis of the GEP and DMP-datasets to address this hypothesis. Our data point to 

the existence of two AML/RAEB/RAEB-t clusters each with a different GEP/DMP signature, highly enriched for SF-

mutant cases. 

MATERIAL AND METHODS 

Patients and molecular analyses 

Diagnostic bone marrow (BM) or peripheral blood (PB) samples from 344 adults were analyzed; patients were enrolled 

on HOVON/SAKK protocols -04, -04A, -29, -32, -42 and -43 (available at www.hovon.nl)202-204. Patients provided 

written informed consent in accordance with the Declaration of Helsinki and all trials were approved by the 

Institutional Review Board of Erasmus University Medical Center. Mutational analyses were carried out as described 
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previously24,36,208,209. Summary of clinical, (cyto)genetical and molecular features of the patients have previously been 

described58. Mutation analyses for the genes U2AF35, SRSF2 and SF3B1 were performed by denaturing high-

performance liquid chromatography (dHPLC) for all 344 samples in the cohort. Sanger sequencing is subsequently 

performed on samples with an abnormal dHPLC profile using the primer sets as shown in Table S1. RNA and cDNA 

synthesis was performed as previously described18. Whole Exome Sequencing (WES) has been performed on DNA 

isolated from RAEB, RAEB-t or AML blasts purified by Ficoll-Hypaque (Nygaard) centrifugation and cryopreserved in 

aliquots229. CD3+ T-cells were expanded from diagnostic bone marrow or peripheral blood specimens and used as 

controls for WES to determine acquired mutations in AML blasts. Primary cells were seeded in supplemented RPMI 

(10% FCS/100 U/ml penicillin/streptomycin) at ~1x106/ml in a 48 well plate pulsed with 25 µL of CD3/CD28-stimulating 

Dynabeads (Invitrogen Dynal AS, Oslo, Norway) in the presence of 30 U/mL of rIL-2. Re-stimulation with same 

concentrations was performed after 7-9 days, and subsequent re-stimulations were applied if deemed necessary 

based on cell numbers determined by microscopy and flow cytometry. Following magnetic separation of the CD3+ T-

cell fraction with MACS CD3 MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the 

manufacturer's recommendation, CD3+ cell purity was routinely determined >96% by flow cytometry, and, in case of 

lower purity levels, a second purification was performed. 

Pre-processing of gene expression and DNA-methylation profiling 

Two high throughput data sets were used in this study: genome wide mRNA expression profiling (GEP) and DNA-

methylation profiling (DMP) data for 344 samples. GEP data was generated using Affymetrix HGU133 plus2.0 (Santa 

Clara, CA, USA),18,58,62. Sample processing and quality control were carried out as described previously18. Normalization 

of raw data was processed with Robust Multi-array Average (RMA)88,230 and probes on the array are remapped to 

Refseq transcripts using a custom Chip Definition File (CDF)231. The custom CDF mapped the original probes to known 

gene-transcripts for UCSC HG19. DMP-data was generated using the HELP-assay, pre-processed as described 

previously58, and annotated using UCSC HG19. GEP and DMP-data are available at the NCBI Gene Expression Omnibus 

accession numbers GSE14468 and GSE18700 respectively. 

Pre-processing and the detection of mutations in whole exome sequence data 

RAW-FASTQ files were aligned using Burrows-Wheeler Aligner101 (BWA) followed by indel realignment using Genome 

Analysis ToolKit (GATK). The resulting aligned files (e.g. BAM file) were then used to remove PCR duplicates using SAM-

tools (Sequence Alignment/Map)232. Single nucleotide variant variants (SNV) were called using the unified genotyper 

of GATK whereas all variants were annotated using Annovar. These annotations were subsequently used to select for 

nonsynonymous substitutions, stopgain mutations, frameshift insertion or frameshift deletions in the exonic or UTR5 

regions that were not reported as a SNP, i.e. by using the Single Nucleotide Polymorphism Database (dbSNP) and 

Cosmic database. SNVs were also excluded if these were seen in the background, generated by whole exome 
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sequencing of T-cells of the same patient samples. Coverage and GATK statistics can be found in supplementary Table 

S2, whereas the frequency of read depth of the aligned loci illustrated in Figure S1. 

Statistical Analyses 

Differentially expressed and methylated genes for the detected clusters are determined by comparing GEP and DMP-

data of each patient sample within the cluster versus patients outside the cluster, using the student T-test. Genes are 

considered to be differentially expressed or methylated when mRNA or DNA-methylation levels differed with P≤0.001 

after correcting for multiple testing using the Benjamini and Hochberg233 method (denoted as the false discovery rate; 

FDR). Patient characteristics among the clusters were compared using the Mann-Whitney-U test (continuous 

variables) and the Fisher exact test (categorical variables). Outcome measures are assessed using Kaplan-Meier 

estimates in a univariate analysis. Multivariate analyses were used according the Cox’s proportional hazard ratio 

model. The definition of complete remission (CR) and survival endpoints such as overall survival (OS), event-free 

survival (EFS), and relapse-free survival (RFS) were based on the recommended consensus criteria234. Pathway analysis 

is performed by utilizing the Molecular Signature Database (MSigDB, v3.0) for the detection of enriched BioCarta 

pathways, KEGG pathways (Kyoto Encyclopedia of Genes and Genomes) and transcription factor targets. Pathways 

and/or gene sets are considered statistically significant when the P-value, derived from the Hypergeometric test, is 

less or equal than 0.05 after correcting for multiple testing using FDR. In addition, pathways are derived using 

Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com, IPA 8.8) with P≤0.05. 

RESULTS 

Hotspot mutations in splice factor genes SF3B1, U2AF35 and SRSF2 are more frequent in RAEB/RAEB-t than in AML. 

Splice factor mutations (SF-mutations) have been reported to be present in myelodysplastic syndromes (MDS) as well 

in acute myeloid leukemias (AML). We nucleotide sequenced cDNA of 7 RAEB, 13 RAEB-t and 324 AML patient samples 

for the eight reported major hotspot mutations217, i.e. in SF3B1 (five hotspots: R625L/C; N626D; H662Q/D; 

K666N/T/E/R; K700E), U2AF35 (two hotspots: S34F; Q157P) and SRSF2 (P95H/L/R). In 2/7 RAEB cases we observed 

mutations in SRSF2. Five of the 13 RAEB-t patients carried mutations in U2AF35 (n=3) or in SRSF2 (n=2). Since SF-

mutations were found in RAEB and RAEB-t samples, and molecular, clinical data revealed no significant differences 

between the RAEB and RAEB-t groups (Table S3), we combined them for further analysis. In AML we found mutations 

in SF3B1 (n=7), U2AF35 (n=4) and SRSF2 (n=17) (Table S4). Thus, we observed a much higher frequency of SF-

mutations in RAEB(T) (RAEB plus RAEB-t) than in AML (35% vs. 8.6%, P<0.001). 

Splice factor mutant AML and RAEB(T) are highly similar. 

AML patients with SF3B1, U2AF35 or SRSF2 mutations were older (59 vs. 46 years, P<0.0001), showed significantly 

lower white blood cell counts (24x109/L vs. 37x109/L, P=0.029), presented with lower bone marrow blast percentages 
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(49% vs. 70%, P<0.0001), and had higher erythroblasts percentages (11% vs. 3%, P<0.0001) (Table S5), than AMLs 

without mutations in SF-genes. In contrast, no significant differences in clinical characteristics were observed between 

RAEB(T) with (n=7) or without (n=13) splice factor gene mutation (Table S6). 

Except for the bone marrow blast percentages, (16% in RAEB(T) vs. 49% in AML, P<0.0001), the parameter that a priori 

defines the separation between RAEB, RAEB-t and AML 226, no differences were observed between SF-mutant RAEB(T) 

(n=7) and SF-mutant AMLs (n=28) (Table S4). Ring sideroblasts were found in bone marrow samples from the SF-

mutant RAEB(T) as well as SF-mutant AML patients (Table S4). Thus, SF-mutant RAEB(T) and SF-mutant AML are 

clinically, cytologically and molecularly similar. 

Two distinct AML/RAEB(T) enriched clusters revealed through integrative analysis of gene expression and cytosine 
methylation profiles.  

We next evaluated whether SF-mutant malignancies among the cohort of 324 AML and 20 RAEB(T) patients carried 

unique combined gene expression (GEP) and DNA-methylation profiles (DMP). We carried out 440 distinct hierarchical 

clustering analyses, using variable combinations of differentially expressed or differentially cytosine methylated genes 

(Figure S2A). For each clustering, we addresses whether the grouping of samples was “stable” by computing the 

significance of the clusters with 1000 multi-scale bootstraps. Subsequently, we computed the silhouette scores235 

from the significant clusters, which does describe how distinctive one cluster is from another one. Using these 

statistics, we could select the optimal hierarchical clustering without making ad hoc decisions. The criteria used to 

choose the variable combinations of differentially expressed or differentially cytosine methylated genes and the 

procedures applied to define which is the most optimal combination of probesets for clustering is explained in the 

Supplement (Computing the optimal hierarchical clustering). The optimal integrated hierarchical clustering was 

observed when GEP and DMP were combined using 2168 GEP and 2045 DMP probesets, which resulted in the 

segregation of 18 clusters (Figure 1 and Figure S2B). For each of the clusters we assessed the enrichment for the 

currently known molecular and (cyto)genetical abnormalities (Figure 1). AMLs with either inv(16), t(15;17), t(8;21) 

formed three distinct clusters each (cluster # 1, 9, 10). CEBPA double-mutant and CEBPAsilenced AMLs formed cluster 

#16 and # 18 respectively. Various other abnormalities, i.e. mutations in NMP1, DNMT3A, IDH1 or IDH2, FLT3ITD, 

FLT3TKD as well as chromosomal abnormalities, 3q, 7q or 11q23 defects are depicted in Figure 1. The distribution of 

these well characterized AML subsets using GEP or DMP-datasets only are represented in Figure S3. Detailed 

molecular and cytogenetic data of all AML patients in each cluster are presented in Table S7.  

Besides the previously identified AML subgroups, two novel clusters, i.e. #3 (n=25) and #11 (n=19) were apparent. 

Clusters #3 and #11 are highly enriched for RAEB(T) patients (both P<0.0001, Table 1). The unique GEP/DMP 

signatures that identified clusters #3 and #11 prompted for further study. 

Patients in clusters #3 and #11 are enriched for RAEB(T) and AMLs with splice factor gene mutations. 
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Of the 25 cases in GEP/DMP cluster #3, eight were classified as RAEB(T) (32%; 8/25, P<0.0001, Table 1). The cluster 

was preferentially enriched for splice factor gene hotspot mutations (52%; 13/25, P<0.0001), i.e. SF3B1 (n=2), U2AF35 

(n=2), and SRSF2 (n=9) (Figure 1 and Figure 2A, Table 1). Four out of 8 RAEB(T) and 9/17 AML cases carried SF-

mutations (Table S8). The patients in cluster #11 were enriched for RAEB(T) (31.6%, 6/19, P=0.0003), and hotspot 

mutations (42.1%, 8/19, P<0.0001) as well. The hotspot mutations are detected among SRSF2 (n=2), SF3B1 (n=3) and 

U2AF35 (n=3) (Figure 1, Figure 2B and Table 1). SF-mutations were seen in 2 out of the 6 RAEB(T) cases, and 6 out of 

the 13 AML cases (Table S8). In case of using the GEP or DMP-data sets separately, there was some grouping of these 

(RAEB(T)) patients and SF-mutations, however these were not significantly grouped together for a particular cluster 

(Figure S3). Thus the grouping of these (RAEB(T)) patients and SF-mutations were only evident when GEP and DMP-

data were used in combination. 

We considered the possibility that in cases of clusters #3 and #11 that did not carry hotspot SF-mutations other SF-

alterations might be present. Whole exome sequencing (WES) was carried out on DNA obtained from non-SF-mutant 

patients of which material was available, i.e. five samples from cluster #3 and six from cluster #11. We did not find 

other mutations in any of the 8 splice factor genes previously reported to be frequently mutated. However, three 

acquired mutations (absent in T-cells from the same patients) were found in other RNA-binding and RNA-splice factor 

genes. In cluster #11 mutations in DHX15 (nonsynonymous; patient #6448), PRPF4B (Frameshift deletion; patient 

#2246) and CELF4 (nonsynonymous; patient #3318) were found (Table S9). 

Erythroid phenotype of cluster #11 patient samples.  

Morphological analysis of bone marrow samples from patients of clusters #3 and #11 revealed that blast percentages 

of the two clusters were both significantly lower compared to the other AMLs (P<0.0001; 34% vs. 68% (cluster #3) 

and P<0.0001; 31% vs. 68% (cluster #11)) (Table 1). Higher percentages of erythroblasts were found in cluster #11 

marrow preparations when compared the other AMLs (P<0.0001; 32% vs. 3%), and to cluster #3 (P<0.0001; 32% vs. 

5%) (Table 1). White blood cell counts (WBC) of cluster #11 cases were significantly reduced in comparison to 

unselected AMLs (P<0.0001; 6x109/; vs. 36x109/L respectively), whereas cluster #3 patients showed WBC counts that 

were equal to other cases (31x109/L, Table 1). Thus the two splice factor mutant clusters which are both enriched for 

RAEB(T) samples show morphological differences for which cluster #11 patients revealed a strong erythroid 

phenotype (Table 1).  

Differentially expressed or hypomethylated genes in cluster #11 patient samples strongly associate with erythroid 
development.  

The signature of 895 differentially expressed and 1180 differentially methylated genes characterized the cases in 

cluster #11 compared to unselected AMLs. Pathway analysis revealed that the profiles in cluster #11 were highly 

enriched for gene sets associated with erythroid development and function, e.g. Alpha-Hemoglobin Stabilizing Protein 

pathway (AHSP)236,237, Porphyrin metabolism or P53 signaling (Figure 3A). Numerous erythroid genes were found to 
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be hypomethylated and comparatively overexpressed, such as GATA1, FECH, ALAS2, AQP1 or KLF1. Other erythroid 

genes were overexpressed with no change in DNA-methylation, such as for ALAD, UROS, UROD, AHSP or HBD (Figure 

3B and Figure S4). Analysis of transcription factor binding sites, using the differentially expressed and methylated 

genes revealed significant enrichment for the E2F and GATA1 transcription factor binding sites among these genes 

(P<0.002 and P<0.001 respectively).  

In contrast to cluster #11 AML cases, the 1522 differentially expressed and 74 methylated genes that are associated 

with cluster #3, lacked the dominant erythroid signature (Figure S5A and B). Thus while both clusters #3 and #11 are 

enriched for RAEB(T) cases and frequently harbour SF-mutations, cluster #11 cases are specifically associated with a 

combined myeloid and erythroid phenotype. 

Clusters #3 RAEB(T) and AML patients frequently carry RAS mutations. 

WES on the small selection of cluster #3 and #11 cases revealed one KRAS and 3 NRAS mutants among the 6 cases of 

cluster #3 that were analysed. We applied Sanger sequencing for NRAS and KRAS among all patients of the two 

clusters. Ten out of the 25 (40%) patients in cluster #3 carried mutations in NRAS (N=9) or KRAS (N=1) (P<0.0001, 

Table 1 and Figure 2). In contrast, no RAS mutations were found in any of the cluster #11 cases analyzed (Table 1).  

Unfavourable outcome for cluster #3 patients 

To verify whether cluster #3 and #11 differed clinically in terms of prognosis, we assessed the overall survival (OS), 

relapse-free survival (RFS), and event-free survival (EFS). The overall survival for patients in cluster #3 and #11 showed 

a 5-year OS of 24% (95% CI, 9%-42%) and 41% (95% CI, 20%-62%) respectively (Figure 4 and Figure S6). In an univariate 

analysis, cluster #3 patients showed significant inferior outcome measures compared to unselected AMLs (OS: 

P=0.001, Figure 4A, RFS: P=0.014, Figure S6A, EFS: P=0.016, Figure S6B), whereas this was not seen for cluster#11 

cases (OS: P=0.425, Figure 4A, RFS: P=0.944, Figure S6A, EFS: P=0.638, Figure S6B). In a multivariate analysis, we could 

confirm that cluster #3 patients showed a poor treatment response, independent from other relevant covariates with 

prognostic value (age, white blood cell count (WBC), FLT3ITD, NPM1pos, NRAS/KRAS, and RAEB(T) and high-risk 

(cyto)genetics), (OS: P=0.042; Figure 4B, RFS: P=0.045; Figure S6C, EFS: P=0.1; Figure S6D). The multivariate analysis 

did not reach significance for cluster #11 (Figure S6E and F). 

DISCUSSION 

In this study we evaluated the frequency of SF-mutations in RAEB(T) (RAEB and RAEB-t) and AML patients. We 

demonstrate that the discrimination between RAEB, RAEB-t and AML, solely based on percentage of blasts is artificial 

and that SF-mutant AML/RAEB(T) should be viewed as a shared malignancy. According to molecular criteria, i.e. GEP, 

DMP and RAS mutation analysis two subclasses of AML/RAEB(T) can be recognized. Not all patients, in the two clusters 

that we identified carried one of the currently well-described hotspot mutations in the splice factor genes SF3B1, 
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U2AF35, and SRSF2. We provide data that point to the existence of other mutations in genes encoding RNA-

binding/splicing factors. Although our detected mutations in DHX15, PRPF4B and CELF4 have not previously been 

reported in AML, other DHX and PRPF family members have been found in AML and MDS as reported in The Cancer 

Genome Atlas (TCGA) http://cancergenome.nih.gov/. Mutations in DHX15, PRPF4B and CELF4 are reported the 

COSMIC database (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/). Moreover, Yoshida et al217 reported 

mutations in the splice factor gene PRPF40B. Together, these observations favour the hypothesis that more splice 

factor genes may be mutated in the AML/RAEB(T) patients that can be uncovered using GEP and DMP-data sets in a 

combined manner.  

It has previously been demonstrated that distinct molecularly defined AML subtypes cluster using gene expression or 

DNA-methylation profiles in an unsupervised manner18,58. In contrast to AMLs with for instance translocations t(8;21), 

t(15;17) or with mutations in CEBPA, SF-mutant malignancies did not form any unique cluster when GEP or DMP-data 

were used separately. It was only through integrating these datasets that we were able to identify SF-mutant patients 

as being distinct from other cases, and consisting of two subgroups. Thus, the hierarchical clustering approach is ideal 

to find co-expression of genes which is indicative for co-regulation, which means that the clustering may identify genes 

that have similar functions or are involved in related biological processes. The disadvantage, however, is that 

clustering only indicates which genes are co-regulated. Thus, it does not lead to a fine resolution of the interaction 

processes, such as: whether an interaction between two genes is directly or mediated by other genes, or whether a 

gene is a regulator or regulatee238. To gain a more detailed form of the regulatory interactions patterns, thus to 

address exactly the mechanisms between DNA-methylation and gene expression within a certain cluster, requires a 

different statistical strategy such as by using Bayesian networks238, although the experiments demonstrated in Figure 

3 may shed some light on this finding. The high contribution of genes that are both differentially hypomethylated and 

highly expressed in the same patient samples from cluster #11 may explain why these patients clustered so strongly 

when GEP and DMP-data were studied in an integrated manner (Figure S3A and B). The reason why patients from 

cluster #3 could only be defined using the combination of GEP and DMP-datasets is unclear, but based on the so called 

silhouette scores235 using the bootstrap labels from Pvclust239 (See Supplement), the hierarchical clustering appeared 

stable.  

We found multiple SF-mutant samples outside clusters #3 and #11. The question is whether, these SF-mutant AMLs 

are biologically different or whether they were grouped in different clusters due to technical inaccuracies, meaning 

that they should have been identified as cluster #3 or #11 cases when more sophisticated procedures of gene 

expression and genome wide cytosine methylation analyses had been applied. Gene chip hybridization experiments 

that we applied in this study, is nowadays being replaced by RNAseq, a procedure that not only determines gene 

expression levels, but also discriminates between different splice forms. To study cytosine methylation we applied 

HELP, an assay that generates “snapshots” of small areas within CpG rich regions. We hypothesize that the 

combination of RNA-Seq with more sophisticated tools to determine DNA-methylation profiles, will provide 
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information that will allow us to generate even better combined GEP/DMP signatures. It is possible that SF-mutant 

cases that were not found in clusters #3 or #11, potentially belong to either of these two clusters but were missed 

with the currently used methodologies. In any case, our study highlights the potential of combining biological data 

sets such as gene expression and DNA-methylation profiling data, and shows that with pursuing such a combined 

approach, leukemia subtypes with a characteristic genotype hidden among the heterogeneity can be uncovered.  

Novel cluster #11 was most remarkable for involving MDS and AML, since these samples appeared to share unique 

erythroid features based on the following findings: 1. Enrichment of pathways associated with erythroid development, 

when differentially expressed and methylated genes were analysed. 2. Multiple erythroid genes were simultaneously 

highly expressed and hypomethylated 3. High cytological percentages of erythroblasts. 4. Presence of patient samples 

with a RAEB or a RAEB-t. 5. Frequent appearance of ring sideroblasts (Table 1). 6. Presence of AML-M6 (erythroid 

leukemia) cases. Even though morphological classification pointed towards leukemias with strong erythroid 

developmental defects, the cluster also contained patient samples classified as AML-M0, M1, M2 or M4. These AMLs 

showed differential expression and hypomethylation of erythroid genes as well, which separated them from other 

AMLs with the same FAB-class. We conclude that AMLs with defective erythroid development exist more frequently 

than morphological classification would suggest.  

 The two AML/RAEB(T) clusters show several differences, among which the high percentages of N-RAS or K-RAS 

mutations in cluster #3 and not cluster #11 patients. This striking difference between the SF-mutant enriched clusters 

may explain the much higher white blood cell counts found among cluster #3 samples. It may also clarify the inferior 

response to treatment of cluster #3 patients. Cluster #3 patients also contain more frequent mutations in SRSF2, 

which has been reported to occur in AMLs that develop upon leukemic transformation from myeloproliferative 

neoplasms. We hypothesize that the two clusters that we identified represent two different splice factor mutant 

malignancies, which may embody distinct evolutionary stages of the disease. This would mean that certain cases in 

cluster #11 may become cluster #3 AMLs in a later phase of the disease, i.e. upon acquiring mutations in N-RAS or K-

RAS. No matter the explanation, our data strongly suggest that SF-mutant RAEB(T) and AML constitute a myeloid 

entity that overrides the separation between AML and MDS and is composed of two subgroups which show overlap 

but also differ clinically and molecularly.  
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Figure 1. Hierarchical clustering of genetic and epigenetic features segregates AML patients into 18 clusters. Heat map 

representing pairwise correlations between the 344 AML cases using the gene expression and DNA-methylation 

profiles of each patient. Ordering of patient samples is based on hierarchical clustering using Pearson correlation and 

Ward’s linkage, which results into clusters of patients that are highly correlated to each other. Colored cells in the 

heat map depict higher positive (red) or lower negative (blue) correlation, as indicated with the scale bar. Bars in the 

first four rows along the diagonal of the heat map indicate presence of the splice factor gene hotspot mutations. In 

the last row it is indicated whether a patient should be considered RAEB(T). Detailed information of each patient in 

the clusters is shown in Table S7. 

 

Figure 2. Gene mutations in patients from cluster #3, cluster #11 and splice factor mutations outside these clusters. 

Columns represent patients from cluster #3, #11 and splice factor mutants outside these clusters. The rows (red) 

indicates mutations in the genotypes SRSF2, U2AF35, SF3B1, NRAS/KRAS, NPM1mutant, FLT3ITD, FLT3TKD, DNMT3A, IDH1 

and IDH2. Wild-type genotypes are indicated in white and missings in blue. The bottom row indicates the RAEB(T) 

status in red and missings in blue. 



165 
 

 

Figure 3. Specific DNA-methylation and gene expression patterns for patient samples from cluster #11 and the enriched 

pathways. (A) Graphical representation of the top 10 enriched pathways/gene sets based on the differentially 

expressed and DNA methylated genes for cluster #11. (B) Differential expressed and DNA-methylation genes in patient 

samples from cluster #11 compared to all other AMLs are indicated with different colored dots. The colors depict the 

gene expression and DNA-methylation status, i.e. the right upper corner represents genes that are hypomethylated 

and overexpressed (green dots). Many of these genes encode for proteins involved in erythroid development or 

function.  
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Figure 4. Survival analysis for patients in clusters #3 and #11. Kaplan-Meier survival curves and multivariate analysis for 

overall survival (OS). Multivariate analysis is based on the Cox proportional hazard ratio (HR) model. The included 

variables into the model are: NPM1mut vs. wild-type NPM1, FLT3ITD vs. no FLT3ITD, NRAS/KRASmut vs. wild-type 

NRAS/KRAS, RAEB(T) vs. no RAEB(T), high cytogenetic risk vs. no high cytogenetic risk; age and white blood cell count 

(WBC) are used as a continues variable. (A) Kaplan-Meier curves for cluster #3 vs. all patients except for cluster #3 

patients, cluster #11 vs. all patients except for cluster #11 patients, and cluster #3 vs. cluster #11 patients. (B) 

Multivariate analysis for cluster #3 patients. 
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Table 1. Patient demographics and clinical characteristics of patients in cluster 3 and 11. Abbreviations: AML-rest, 

patients that are not in cluster #3 or #11; Number of cases (percentage), median (range) or missing values are depicted 

were appropriate; WBC count: white blood cell count; Platelet count: number of platelets per 109/L; Bone marrow 

blasts (%): Percentage of Bone marrow blasts; Fab class, morphological classification; M0, minimally differentiated; 

M1, without maturation; M2, with maturation; M3, hypergranular promyelocytic; M4, myelomonocytic; M5, (a) 

monoblastic, (b) monocytic; M6, erytroleukemia; RAEB(T), Refractory Anemia with Excess Blasts (in Transformation); 

Ring sideroblasts: Patient cells showed Yes/ No Ring sideroblasts; Erythroblasts (%): Percentage of Erythroblasts; 

Thrombo (%): Percentage of thrombocytes; Splice factor mutations: mutations that are detected in the hotspots of 

gene SRSF2, U2AF35 and SF3B1; NRAS/KRAS: mutations in codon 12,13 or 61; P1 values indicate the comparison of 

patients in Cluster #3 versus the patients not in cluster #3 (AML-rest); P2 values indicate the comparison of patients 

in cluster #11 versus the patients not in cluster #11 (AML-rest); P3 values indicate the comparison of patients in cluster 

Characteristics Cluster 3 (n=25) AML-rest (n=319) P 1 Cluster 11 (n=19) AML-rest (n=325) P 2 P 3

Age, years 0.00026* 0.11 0.17

median 58 47 51 48

range 18-72 15-77 33-73 15-77

Missing 0 1 0 1

Sex 0.41 0.24 1

Male 16 (64%) 171 (54%) 13 (68%) 174 (54%)

Female 9 (36%) 147 (46%) 6 (32%) 150 (46%)

Missing 0 1 0 1

WBC count,  (x10 9/L) 0.85 1.1e-06* 7.9e-06*

Median 31 34 6 36

Range 4.8-128 0.3-274 1.4-33 0.3-274

Not determined 0 2 0 2

Platelet count,  (x10 9/L) 0.00054* 0.015* 0.67

Median 83 57 80 57

Range 26-931 7-742 22-374 7-931

Not determined 0 2 0 2

Bone marrow blasts (%) 2.5e-06* 7.1e-07* 0.53

Median 34% 68% 31% 68%

Range 6-88 0-98 8-64 0-98

Not determined 0 12 0 12

Normal karyotype 11 (44%) 141 (44.2%) 1 8 (42.1%) 144 (44.3%) 0.82 1

Fab classification

Fab class M0 0 (0%) 11 (3.45%) 1 0 (0%) 11 (3.38%) 1 1

Fab class M1 0 (0%) 68 (21.3%) 0.0068* 1 (5.26%) 67 (20.6%) 0.14 0.43

Fab class M2 3 (12%) 79 (24.8%) 0.22 7 (36.8%) 75 (23.1%) 0.17 0.074

Fab class M3 0 (0%) 7 (2.19%) 1 0 (0%) 7 (2.15%) 1 1

Fab class M4 8 (32%) 59 (18.5%) 0.12 2 (10.5%) 65 (20%) 0.55 0.15

Fab class M5 4 (16%) 68 (21.3%) 0.62 0 (0%) 72 (22.2%) 0.017* 0.12

Fab class M6 0 (0%) 3 (0.94%) 1 1 (5.26%) 2 (0.615%) 0.16 0.43

Fab class RAEB(T) 8 (32%) 12 (3.76%) 1.7e-05* 6 (31.6%) 14 (4.31%) 0.0003* 1

Not determined 2 3 2 3

Ring sideroblasts 4 (16%) 10 (3.1%) 0.23 8 (42%) 6 (1.8%) 0.047* 0.088

Not determined 0 286 0 286

Erythroblasts (%) 5% 3% 0.14 32% 3% 2.6e-09* 2e-05*

Range 1-29 0-59 8-59 0-52

Not determined 2 138 3 137

Thrombocytes (%) 64% 62% 0.51 73% 60% 0.33 0.83

Range 12-931 11-413 22-413 11-931

Not determined 4 294 5 293

Mutations

SRSF2 9 (36%) 12 (3.76%) 1.8e-06* 2 (10.5%) 19 (5.85%) 0.29 0.085

U2AF35 2 (8%) 5 (1.57%) 0.083 3 (15.8%) 4 (1.23%) 0.0034* 0.63

SF3B1 2 (8%) 5 (1.57%) 0.087 3 (15.8%) 4 (1.23%) 0.0033* 0.38

NRAS/KRAS 10 (40%) 30 (9.4%) 1.4e-05* 0 (0%) 40 (12.3%) 0.15 0.0023*
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#3 versus the patients in cluster #11; P-values are marked with (*) if lower than 0.05 and are computed using Mann-

Whitney-U test (continues variables) and two sided Fisher exact test (categorical variables). 

  



169 
 

SUPPORTING MATERIAL 

Computing the optimal hierarchical clustering 

A major disadvantage of a hierarchical clustering approach is the uncertainty of the derived clusters, e.g. the use of 

different number of features may result in different patient-clusters. We assessed the uncertainty of a hierarchical 

clustering using Pvclust239 that builds on multi-scale bootstrap. It computes a bootstrap probability (BP) and an 

approximately unbiased (AU) P-value for each cluster. These P-values indicate how strong a clustering is supported by 

the data. Clusters with significance level < 0.05 are taken into consideration which indicates that these clusters do not 

only “seem to exist” but are stable when we perturb the number of observations. In further analyses we used the AU 

P-value for assessment of uncertainty as this is a better approximation than BP P-value according to the authors of 

Pvclust239.  

To select the hierarchical clustering which is best supported by the data, we used the following procedure: i) Ranking 

the feature sets across-patient standard deviation for each data set and selecting an increasing number of probesets 

using 21 different cut-offs ([0,..,20%]). The selected feature sets for GEP and DMP are then iteratively combined. ii) 

Each feature set (440 in total) is then used for hierarchical cluster analysis with 1000 multi-scale bootstraps, using 

Ward’s linkage and Pearson correlation distance. iii) An average silhouette score235 (relatedness of samples in a cluster 

and the separation of different clusters) is computed for each significantly observed cluster from Pvclust (Figure S2). 

iv) Subsequently the hierarchical clustering that is best supported by the data is selected.  

One should expect that the highest silhouette score from the significant Pvclust clusters should preserve, to some 

extent, the clusters of currently known abnormalities (CEBPAsilenced, CEBPAdm, inv(16), t(8;21) and t(15;17)). This is in 

line with our findings as the highest silhouette score from the significant Pvclust clusters also showed a high silhouette 

score for the currently known clusters. Note that the GEP and DMP-data is mean normalized with unit variance (z-

score). 

Computing the stability of the detected clusters 

The stability for the 18 newly derived clusters is examined using all the derived hierarchical clustering's as described 

before. The cluster-labels that are determined for each hierarchical clustering are used to determine the average 

silhouette score for each of the hierarchical clustering (Figure S2). We hypothesized that stable clusters are frequently 

seen among different hierarchical clustering’s. For the optimal hierarchical clustering we detected that ten out of 

eighteen clusters (# 1, 2, 3, 6, 8, 9, 11, 13, 16, 18) have high silhouette scores [0.5,..,1] based on all other hierarchical 

clustering’s. These include the (cyto)genetically groups such as, inv(16), t(15;17), CEBPAdm and CEBPAsilenced. Five 

clusters (# 3, 11, 13, 14, 15) varied in silhouette scores [0.4,..,0.5] and, three clusters (# 4, 7 and 12) showed "low" 

silhouette scores [0,..,0.4]. Based on these average silhouette scores we categorized the clusters into high (n=10 

clusters), medium (n=5 clusters) and low (n=3 clusters) stability (Illustrated with **, * and no asterisks respectively).  
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Figure legends 

 

Figure S1. Read depth frequency of the aligned loci. The horizontal axis represents the read depth that is measured for 

a loci and the vertical axis its frequency. As an example, a loci with read depth of 100 is seen 24517 times for each 

sample, whereas a read depth of 1000 is seen 4 times for each sample (both are averages among all samples). 

 

Figure S2. Selection of the most optimal hierarchical clustering. Twenty one different cut-offs are chosen based on 

patient standard deviation for GEP and separately for DMP. (A) Iteratively combining gene expression and DNA-

methylation probesets using one of the 440 combinations: 21x21 minus 1 (zero GEP and zero DMP probesets). (B) 

The uncertainty of each hierarchical clustering is assessed using the estimated bootstrap labels from Pvclust, and 
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scored using the silhouette scores. The hierarchical clustering with the highest average silhouette score is best 

supported by the data and indicated with a red rectangle. 

 

Figure S3. Optimal hierarchical clustering for GEP and DMP separately. Heat map representing pairwise correlations 

between the 344 AML cases for the gene expression or DNA-methylation profiles. The optimal hierarchical clustering 

for (A) GEP was based on 650 probesets, (B) DMP was based on 682 probesets. The diagonal illustrates in red the AML 

subtypes, inv(16), t(8;21), t(15;17), CEBPA double-mutants (CEBPAdm), CEBPAsilenced, the splice factor genes U2AF35, 

SF3B1, SRSF2, and the RAEB(T) cases. 
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Figure S4. Gene expression and DNA-methylation levels of annotated genes in erythroid development. Heat map 

representing pairwise correlations between the 344 AML cases using the integrated gene expression or DNA-

methylation profiles. The splice factor mutants are indicated with red bars. Gene expression data of the differential 

regulated genes, involved in erythroid development are mean normalized and depicted on the diagonal with red bars 

for relative high gene expression levels. Blue bars depict hypomethylation levels.  

 

Figure S5. DNA-methylation and gene expression levels for cluster #3 and the enriched pathways. (A) Graphical 

representation of the top 10 enriched pathways/gene sets based on the differentially expressed and DNA methylated 

genes for cluster #3. (B) Differential expressed and DNA-methylation genes in patient samples from cluster #3 

compared to all other AMLs are indicated with different colored dots. The colors depict the gene expression and DNA-

methylation status, i.e. the right upper corner represents genes that are hypomethylated and overexpressed (green 

dots). Many of these genes encode for proteins involved in erythroid development or function. 
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Figure S6. Relapse-free survival and Event-free survival for patients in clusters #3 and #11. Kaplan-Meier survival curves, 

and multivariate analysis for (A) relapse-free survival (RFS) and (B) event-free survival (EFS) for cluster #3 vs. all 

patients except for cluster 3 patients, cluster #11 vs. all patients except for cluster 11 patients, and cluster #3 vs. 

cluster #11 patients. Multivariate analysis for cluster #3 for (C) RFS, (D) EFS, and for cluster #11 (E) RFS and (F) EFS. 

The included covariates into the Cox proportional hazard ratio (HR) model are: NPM1mut vs. wild-type NPM1, FLT3ITD 

vs. no FLT3ITD, NRAS/KRASmut vs. wild-type N/KRAS, RAEB(T) vs. no RAEB(T), high cytogenetic risk vs. no high cytogenetic 

risk; age and white blood cell count (WBC) are used as a continues variable. 

  

Table S1. Primer sets dHPLC (WAVE). 

Gene Mutation Primer

U2AF35 Q157 P/R FW: GTGAGGAAGATGCGGAAAAG

RV: GGGATCGGGATCTTGATCTAT

U2AF35 34 F/Y FW: GTATCTGGCCTCCATCTTCG

RV: TGTTCCTGCATCTCCACATC

SF3B1 N626D FW: CCCTGGGCATTCCTTCTTTA

H662Q/D

R625L/C RV: TCGATACCATAAGGAGTTGCTG

K666N/T/E/R

K700E

SRSF2 P95 H/L/R FW: GCTGAGGACGCTATGGATG

RV: ACCGAGATCGAGAACGAGTG

Primer sets Sanger sequencing  

Gene Primer

U2AF35 FW: GTATCTGGCCTCCATCTTCG

RV: ATCTCTCGACCGCCTCCT

SF3B1 FW: TAGAGTGGAAGGCCGAGAGA

RV: CTTTGTTTGCCAACTCCACA

SRSF2 FW: CAAGGTGGACAACCTGACCT

RV: GAGACTTCGAGCGGCTGTA
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Table S2. Coverage and GATK statistics. Abbreviations: Sample: Sample number, Passed filtered reads: Number of reads 

that are processed by the Illumina software and are present in the Fastq file, Mapped reads: Number of reads mapped 

on the genome by using BWA, Mapped reads (%): Percentage of mapped reads, R1 and R2: Paired end reads R1 and 

R2, Bases covered: Number of loci covered on reference genome by the aligned reads (at least one read per locus), 

Bases aligned: Number of bases aligned on the reference genome, Average coverage: Bases aligned / Bases covered, 

snp137: the overlap of the variants, SNVs and substitutions that are called using GATK and are present in the snp137 

data base. 

Sample
Passed f i ltered 

reads
Mapped reads Mapped reads (%) R1 R2 Bases covered Bases al igned

Average coverage 

per base

Variants cal led 

using GATK:

SNV's cal led 

using GATK:

substitutions cal led 

using GATK:
snp137

2224 34091622 32094531 94.14 15258913 16835618 373056003 1986886090 5.32597 128702 123419 5283 123739

2224_T_cells 47356836 44225068 93.39 21023174 23201894 472512207 2909908293 6.15838 156947 149677 7270

2228 36372200 34375838 94.51 16189738 18186100 331980963 1563965749 4.71101 118109 114045 4064 115497

2228_T_cells 39905728 37490043 93.95 17537179 19952864 351006415 1713395904 4.88138 123589 119088 4501

2246 35842032 33590830 93.72 16261848 17328982 415628983 2467425001 5.9366 144932 137818 7114 140237

2246_T_cells 38694732 36390288 94.04 17611303 18778985 451620796 2696995571 5.97181 152047 144855 7192

2259 34117058 32322925 94.74 15264396 17058529 314595972 1487891607 4.72953 114225 110448 3777 111983

2259_T_cells 48535354 45439523 93.62 21171846 24267677 398600075 2056532498 5.15939 138156 132805 5351

2278 25438736 24442670 96.08 11985020 12457650 363305533 1870456824 5.14844 125017 119905 5112 121544

2278_T_cells 53288208 50424209 94.63 24400575 26023634 603520411 3791255408 6.2819 186899 178122 8777

3318 28937768 27416617 94.74 13351220 14065397 351752322 1886557606 5.36331 126724 120930 5794 122998

3318_T_cells 34143650 31973667 93.64 15466801 16506866 397039231 2317539826 5.83705 137582 131213 6369

3330 52979212 49427482 93.30 23746012 25681470 590082375 3648429392 6.18292 182246 173493 8753 175803

3330_T_cells 32075508 30568871 95.30 14531117 16037754 303970310 1360117971 4.47451 110340 106591 3749

4340 47247930 44456569 94.09 20832604 23623965 408942685 2013605323 4.92393 149246 143844 5402 145294

4340_T_cells 51454366 48043928 93.37 22316745 25727183 432515914 2163016414 5.00101 150247 144848 5399

5290 42173302 39338107 93.28 18525214 20812893 431114646 2392225490 5.54893 143426 137360 6066 137176

5290_T_cells 31745666 30204773 95.15 14482603 15722170 376004965 1972052221 5.24475 131462 126021 5441

5363 55344164 51188451 92.49 24475525 26712926 602900742 3591679671 5.95733 179430 171128 8302 171701

5363_T_cells 43951406 41441614 94.29 20035614 21406000 537334926 3060382687 5.69548 166267 158656 7611

6373 46915790 44068392 93.93 21243020 22825372 576622910 3241057394 5.62076 171046 163305 7741 165604

6373_T_cells 44088884 41370529 93.83 19959477 21411052 490831326 2970759336 6.05251 154930 147915 7015

6448 34280072 32414880 94.56 15733795 16681085 414714015 2346944269 5.65919 137129 131142 5987 131892

6448_T_cells 43679746 41084267 94.06 19870521 21213746 488886149 2988629222 6.11314 156717 149587 7130

7303 34784714 33122410 95.22 16004614 17117796 419375019 2348115345 5.59908 141797 135452 6345 137425

7303_T_cells 49855982 46224692 92.72 21296701 24927991 379789014 2065561416 5.43871 130225 124955 5270

7309 43975726 40959900 93.14 18972037 21987863 355613368 1832904708 5.15421 124274 119590 4684 121639

7309_T_cells 55736448 51289139 92.02 23420915 27868224 416743495 2256744655 5.41519 137125 131597 5528

7311 54133686 49991930 92.35 23868057 26123873 597517221 3484262027 5.83123 176468 168593 7875 168639

7311_T_cells 48235262 44651524 92.57 21362775 23288749 537703445 3069161182 5.70791 164881 157590 7291
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Table S3. Comparison of patient demographics, clinical and molecular characteristics between: RAEB with RAEB(t). 

Abbreviations: RAEB(T): Refractory anemia with excess blasts (in transformation); Number of cases (percentage), 

median (range) or missing values are depicted were appropriate; WBC count: White Blood Cell count; Platelet count: 

number of platelets per 109/L; Bone marrow blasts (%): Percentage of Bone marrow blasts; Normal karyotype: Patient 

have yes/no normal karyotype; Erythroblasts (%): Percentage of Erythroblasts; Thrombocytes (%): Percentage of 

thrombocytes; Ring sideroblasts: Patient cells showed Yes/ No Ring sideroblasts; FLT3ITD: internal tandem duplication 

in FLT3; FLT3TKD: tyrosine kinase domain mutation in FLT3; NPM1: Nucleophosmin 1; CEPBA double-mutant: double 

mutation in CEBPA; CEPBA single mutant: single mutation in CEBPA; IDH1 or IDH2: Isocitrate dehydrogenase 1 or 2; 

DNMT3A: DNA (cytosine-5)-methyltransferase 3A; SRSF2, U2AF35 and SF3B1 are splice factor mutations that are 

detected in the hotspots; P-values indicate the comparison between the two groups. P-values are marked with (*) if 

lower than 0.05 and are computed using Mann-Whitney-U test (continues variables) and two sided Fisher exact test 

(categorical variables). 

Characteristics RAEB (n=7) RAEB-T (n=13) P*

Age, years 0.91

median 53 53

range 20-71 30-72

Missing 0 0

Sex 0.63

Male 5 (71%) 11 (85%)

Female 2 (29%) 2 (15%)

Missing 0 0

WBC count,  (x10 9/L) 0.25

Median 5 11

Range 1.4-22 2-100

Not determined 0 0

Platelet count,  (x10 9/L) 0.58

Median 135 66

Range 18-217 13-266

Not determined 0 0

Bone marrow blasts (%) 0.78

Median 16% 17%

Range 12-19 2-28

Not determined 0 0

Normal karyotype 2 (28.6%) 4 (30.8%) 1

Erythroblasts 25% 16% 0.78

Range 9-35 1-59

Not determined 2 1

Thrombocytes (%) 81% 62% 0.83

Range 19-217 17-266

Not determined 3 4

Ring Sideroblasts 2 3 0.78

Not determined 25% 16%

Mutations

FLT3 ITD 0 (0%) 1 (7.69%) 1

FLT3 TKD 0 (0%) 1 (7.69%) 1

NPM1 + 0 (0%) 1 (7.69%) 1

CEBPA double mutation 0 (0%) 1 (7.69%) 1

CEBPA single mutation 1 (14.3%) 1 (7.69%) 1

IDH1 1 (14.3%) 1 (7.69%) 1

IDH2 1 (14.3%) 0 (0%) 0.35

DNMT3A 0 (0%) 4 (30.8%) 0.25

SRSF2 2 (28.6%) 2 (15.4%) 0.6

U2AF35 0 (0%) 3 (23.1%) 0.52

SF3B1 0 (0%) 0 (0%) 1
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Table S4. Comparison of patient demographics, clinical and molecular characteristics between. RAEB(T) with Splice 

factor mutations versus AMLs with Splice factor mutations: Abbreviations: RAEB(T): Refractory anemia with excess 

blasts (in transformation). With splice factor mutations: mutations that are detected in the hotspots of gene SRSF2, 

U2AF35 and SF3B1; Number of cases (percentage), median (range) or missing values are depicted were appropriate; 

WBC count: white blood cell count; Platelet count: number of platelets per 109/L; Bone marrow blasts (%): Percentage 

of Bone marrow blasts; Normal karyotype: Patient have Yes/No normal karyotype; Fab class, morphological 

classification; M0, minimally differentiated; M1, without maturation; M2, with maturation; M3, hypergranular 

promyelocytic; M4, myelomonocytic; M5, (a) monoblastic, (b) monocytic; M6, erytroleukemia; Erythroblasts (%): 

Percentage of Erythroblasts; Thrombocytes (%): Percentage of thrombocytes; Ring sideroblasts: Patient cells showed 

Yes/No Ring sideroblasts; FLT3ITD: internal tandem duplication in FLT3; FLT3TKD: tyrosine kinase domain mutation in 

FLT3; NPM1: Nucleophosmin 1; CEPBA double-mutant: double mutation in CEBPA; CEPBA single mutant: single 

mutation in CEBPA; IDH1 or IDH2: Isocitrate dehydrogenase 1 or 2; DNMT3A: DNA (cytosine-5)-methyltransferase 3A; 

SRSF2, U2AF35 and SF3B1 are splice factor mutations that are detected in the hotspots; P-values indicate the 

Characteristics
RAEB(T) with splice factor 

mutations (n=7)

AMLs with splice factor 

mutations (n=28)
P*

Age, years 0.37

median 65 59

range 46-72 37-77

Missing 0 0

Sex 0.39

Male 6 (86%) 17 (61%)

Female 1 (14%) 11 (39%)

Missing 0 0

WBC count,  (x10 9/L) 0.38

Median 5 24

Range 2-100 2.1-109

Not determined 0 0

Platelet count,  (x10 9/L) 1

Median 65% 65%

Range 35-135 10-931

Not determined 0 0

Bone marrow blasts (%) 0.00045*

Median 16% 49%

Range 9-25 6-93

Not determined 0 3

Normal karyotype 2 (28.6%) 11 (39.3%) 0.67

Fab class

M0 0 (0%) 1 (3.57%) 1

M1 0 (0%) 4 (14.3%) 0.56

M2 0 (0%) 8 (28.6%) 0.17

M3 0 (0%) 0 (0%) 1

M4 0 (0%) 7 (25%) 0.3

M5 0 (0%) 4 (14.3%) 0.56

M6 0 (0%) 0 (0%) 1

RAEB(T) 7 (100%) 0 (0%) 1.5e-07*

Not determined 0 3

Erythroblasts (%) 29% 11% 0.42

Range 1-59 1-52

Not determined 0 7

Thrombocytes (%) 46% 60% 0.52

Range 17-127 11-931

Not determined 1 6

Ring Sideroblasts 1 (14.3) 7 (25) 1

Not determined 0 0

Mutations

FLT3 ITD 0 (0%) 8 (28.6%) 0.17

FLT3 TKD 0 (0%) 0 (0%) 1

NPM1 + 0 (0%) 4 (14.3%) 0.56

CEBPA double mutation 0 (0%) 1 (3.57%) 1

CEBPA single mutation 1 (14.3%) 1 (3.57%) 0.36

IDH1 1 (14.3%) 3 (10.7%) 1

IDH2 1 (14.3%) 4 (14.3%) 1

DNMT3A 4 (57.1%) 7 (25%) 0.15

SRSF2 4 (57.1%) 17 (60.7%) 1

U2AF35 3 (42.9%) 4 (14.3%) 0.13

SF3B1 0 (0%) 7 (25%) 0.3
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comparison between the two groups. P-values are marked with (*) if lower than 0.05 and are computed using Mann-

Whitney-U test (continues variables) and two sided Fisher exact test (categorical variables). 

 

Table S5. Comparison of patient demographics, clinical and molecular characteristics between. AML with splice factor 

mutations versus AMLs without splice factor mutations: Abbreviations: With splice factor mutations: mutations that 

are detected in the hotspots of gene SRSF2, U2AF35 and SF3B1; Number of cases (percentage), median (range) or 

missing values are depicted were appropriate; WBC count: white blood cell count; Platelet count: number of platelets 

per 109/L; Bone marrow blasts (%): Percentage of Bone marrow blasts; Normal karyotype: Patient have Yes/No normal 

karyotype; Fab class, morphological classification; M0, minimally differentiated; M1, without maturation; M2, with 

maturation; M3, hypergranular promyelocytic; M4, myelomonocytic; M5, (a) monoblastic, (b) monocytic; M6, 

Characteristics
AML with splice factor 

mutations (n=28)

AMLs without splice factor 

mutations (n=283)
P*

Age, years 6.6e-07*

median 59 46

range 37-77 15-77

Missing 0 1

Sex 0.43

Male 17 (61%) 144 (51%)

Female 11 (39%) 138 (49%)

Missing 0 1

WBC count, (x10 9 /L) 0.029*

Median 24 37

Range 2.1-109 0.3-274

Not determined 0 2

Platelet count, (x10 9 /L) 0.17

Median 65% 56%

Range 10-931 7-742

Not determined 0 2

Bone marrow blasts (%) 0.00092*

Median 49% 70%

Range 6-93 0-98

Not determined 3 8

Normal karyotype 11 (39.3%) 131 (46.3%) 0.84

Fab c lass

M0 1 (3.57%) 10 (3.53%) 1

M1 4 (14.3%) 60 (21.2%) 0.47

M2 8 (28.6%) 69 (24.4%) 0.65

M3 0 (0%) 7 (2.47%) 1

M4 7 (25%) 59 (20.8%) 0.63

M5 4 (14.3%) 65 (23%) 0.35

M6 0 (0%) 3 (1.06%) 1

RAEB(T) 0 (0%) 0 (0%) 1

Not determined 3 2

Erythroblasts (%) 0.00064*

Median 11% 3%

Range 1-52 0-54

Not determined 7 123

Mutations

FLT3 ITD 8 (28.6%) 84 (29.7%) 1

FLT3 TKD 0 (0%) 38 (13.4%) 0.033*

NPM1 + 4 (14.3%) 97 (34.3%) 0.034*

CEBPA double mutation 1 (3.57%) 22 (7.77%) 0.71

CEBPA single mutation 1 (3.57%) 8 (2.83%) 0.58

IDH1 3 (10.7%) 21 (7.42%) 0.47

IDH2 4 (14.3%) 28 (9.89%) 0.51

DNMT3A 7 (25%) 67 (23.7%) 0.81

SRSF2 17 (60.7%) 0 (0%) 5.0e-21*

U2AF35 4 (14.3%) 0 (0%) 4.7e-05*

SF3B1 7 (25%) 0 (0%) 2.3e-08*
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erytroleukemia; RAEB(T), Refractory Anemia with Excess Blasts (in Transformation); Erythroblasts (%): Percentage of 

Erythroblasts; FLT3ITD: internal tandem duplication in FLT3; FLT3TKD: tyrosine kinase domain mutation in FLT3; 

NPM1: Nucleophosmin 1; CEPBA double-mutant: double mutation in CEBPA; CEPBA single mutant: single mutation in 

CEBPA; IDH1 or IDH2: Isocitrate dehydrogenase 1 or 2; DNMT3A: DNA (cytosine-5)-methyltransferase 3A; SRSF2, 

U2AF35 and SF3B1 are splice factor mutations that are detected in the hotspots; P-values indicate the comparison 

between the two groups. P-values are marked with (*) if lower than 0.05 and are computed using Mann-Whitney-U 

test (continues variables) and two sided Fisher exact test (categorical variables). 

 

Table S6. Comparison patient demographics, clinical and molecular characteristics between. RAEB(T) with Splice factor 

mutations versus RAEB(T) without Splice factor mutations: Abbreviations: With splice factor mutations: mutations 

Characteristic s

RAEB(T) with spl ice 

fac tor mutations 

(n=7)

RAEB(T) without 

spl ice fac tor 

mutations (n=13)

P*

Age, years 0.05

median 65 52

range 46-72 20-71

Missing 0 0

Sex 1

Male 6 (86%) 9 (75%)

Female 1 (14%) 3 (25%)

Missing 0 0

WBC count, (x10 9 /L) 0.95

Median 5 10

Range 2-100 1.4-22

Not determined 0 0

Platelet count, (x10 9 /L) 0.97

Median 65 67

Range 35-135 13-266

Not determined 0 0

Bone marrow blasts (%) 0.89

Median 16% 17%

Range 9-25 8-28

Not determined 0 0

Normal karyotype 2 (28.6%) 4 (33.3%) 1

Erythroblasts (%) 0.86

Median 29% 22%

Range 1-59 5-54

Not determined 0 3

Thrombocytes (%) 46 65 0.37

Range 17-127 19-266

Not determined 1 5

Ring Sideroblasts 1 (14.3) 3 (25) 0.57

Not determined 0 4

Muations

FLT3 ITD 0 (0%) 1 (8.33%) 1

FLT3 TKD 0 (0%) 1 (8.33%) 1

NPM1 + 0 (0%) 1 (8.33%) 1

CEBPA double mutation 0 (0%) 1 (8.33%) 1

CEBPA single mutation 1 (14.3%) 1 (8.33%) 1

IDH1 1 (14.3%) 1 (8.33%) 1

IDH2 1 (14.3%) 0 (0%) 0.37

DNMT3A 4 (57.1%) 0 (0%) 0.0063*

SRSF2 4 (57.1%) 0 (0%) 0.009*

U2AF35 3 (42.9%) 0 (0%) 0.036*

SF3B1 0 (0%) 0 (0%) 1
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that are detected in the hotspots of gene SRSF2, U2AF35 and SF3B1; Number of cases (percentage), median (range) 

or missing values are depicted were appropriate; WBC count: white blood cell count; Platelet count: number of 

platelets per 109/L; Bone marrow blasts (%): Percentage of Bone marrow blasts; Normal karyotype: Patient have 

Yes/No normal karyotype; Fab class, morphological classification; M0, minimally differentiated; M1, without 

maturation; M2, with maturation; M3, hypergranular promyelocytic; M4, myelomonocytic; M5, (a) monoblastic, (b) 

monocytic; M6, erytroleukemia; RAEB(T), Refractory Anemia with Excess Blasts (in Transformation); Erythroblasts (%): 

Percentage of Erythroblasts; Thrombocytes (%): Percentage of thrombocytes; Ring sideroblasts: Patient cells showed 

Yes/No Ring sideroblasts; FLT3ITD: internal tandem duplication in FLT3; FLT3TKD: tyrosine kinase domain mutation in 

FLT3; NPM1: Nucleophosmin 1; CEPBA double-mutant: double mutation in CEBPA; CEPBA single mutant: single 

mutation in CEBPA; IDH1 or IDH2: Isocitrate dehydrogenase 1 or 2; DNMT3A: DNA (cytosine-5)-methyltransferase 3A; 

SRSF2, U2AF35 and SF3B1 are splice factor mutations that are detected in the hotspots; P-values indicate the 

comparison between the two groups. P-values are marked with (*) if lower than 0.05 and are computed using Mann-

Whitney-U test (continues variables) and two sided Fisher exact test (categorical variables). 

<Table S7 is not included> 

Table S7. Characteristics Cluster #1-18. Patient: patient number. Cluster: cluster number. FAB: FAB subtype of AML. 

Real-time PCR for CBFA-MYH11, PML-RARα and AML1-ETO. FLT3ITD: internal tandem duplication in FLT3. FLT3TKD: 

tyrosine kinase domain mutation in FLT3. N-RAS or K-RAS: mutation in codon 12,13 or 61. NPM1: Nucleophosmin 1. 

DNMT3A: DNA (cytosine-5)-methyltransferase 3A. IDH1 or IDH2: Isocitrate dehydrogenase 1 or 2. CEPBA double-

mutant: double mutation in CEBPA. CEPBA single mutant: single mutation in CEBPA. Karyotype: t(15;17), t(8;21), 

inv(16)/t(16;16),+8,+11,+21,-5(q),-7(q),t(9;22),3q abnormalities, 11q23 abnormalities (translocation/self-fusion 

(sMLL)), complex(abnormalities involved) (>3abnormalities), and normal karyotype (NN) are indicated. ND: Not 

Determined. 
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Table S8. Bone marrow blast, Ring-sideroblasts, Erythroblast and Thrombo characteristics Cluster #3 and 11. 

Abbreviations: Cluster: Patients are detected in cluster 3 or 11; Patient ID: Patient identification number; ; RAEB(T), 

Refractory Anemia with Excess Blasts (in Transformation); WBC count: white blood cell count; Platelet count: number 

of platelets per 109/L; Bone marrow blasts (%): Percentage of Bone marrow blasts; Ring sideroblasts: Patient cells 

showed Yes/No Ring sideroblasts; Erythroblasts (%): Percentage of Erythroblasts; SF-mutants: Splice factor mutation 

in SRSF2, U2AF35 or SF3B1; Thrombocytes (%): Percentage of thrombocytes. 

 

Table S9. Newly identified putative splice factor mutations. Patient: patient number. Reference: Reference human 

genome 19 sequence. Altered: Measured variation in DNA sequence. Variation situated: genomic-location of the 

Cluster Patient ID RAEB(T)
WBC count 

(x 1 0 9 /L )

Platelet count 
(x 1 0 9 /L )

Bone marrow blasts 

(%)
Ring sideroblasts

Erythroblasts 

(%)
SF-mutant

Thrombocytes 

(%)

5349 RAEB(T) 31.0 86 25 - 1 Yes 57

5354 RAEB(T) 54.0 54 20 - 2 Yes 18

7311 RAEB(T) 99.5 46 9 - 5 Yes 17

7116 RAEB(T) 8.4 266 24 - 5 - 266

7118 RAEB 4.8 35 13 - 29 Yes 35

3330 RAEB 22.0 145 41 - ND - ND

7177 RAEB 19.2 26 19 - 25 - 19

7312 RAEB 13.0 217 17 Yes 15 - 217

7309 - 35.0 70 22 - 1 - 21

7117 - 109.0 64 6 - 10 Yes 64

2228 - 38.0 931 34 - 16 Yes 931

2259 - 57.1 74 49 - 3 - 75

2278 - 28.0 78 46 Yes 23 - 12

2279 - 23.0 104 59 - ND - ND

2283 - 47.4 64 49 - 18 Yes 27

3323 - 23.0 83 42 Yes 11 Yes 64

5290 - 8.4 181 49 - 16 - 130

5363 - 54.0 191 31 - 6 - 117

6247 - 11.2 115 34 - 1 Yes ND

6454 - 43.0 42 63 - 1 - 93

7137 - 37.0 283 74 - 5 Yes 283

7167 - 60.7 57 52 - 16 Yes 57

7172 - 128.0 211 88 - 2 ND 211

7183 - 12.8 195 66 - 2 Yes 145

7325 - 26.0 65 29 Yes 1 Yes ND

3481 RAEB(T) 2.0 65 20 - 37 Yes ND

6450 RAEB(T) 3.9 134 14 Yes 59 Yes 127

6359 RAEB(T) 7.1 57 10 Yes 44 - 65

6373 RAEB(T) 13.0 67 17 Yes ND - 92

6448 RAEB(T) 11.0 66 8 - 34 - 62

7303 RAEB(T) 5.8 23 11 - 54 - 23

7317 - 16.5 135 17 Yes 52 Yes 46

2224 - 1.4 22 24 - 54 - 22

2246 - 2.4 198 54 Yes 41 - 196

2256 - 4.7 152 31 Yes 25 Yes 169

3318 - 6.6 87 35 Yes 19 ND 47

3489 - 5.0 374 64 - 8 Yes 413

4340 - 14.3 64 33 - 9 - 86

5287 - 13.5 80 39 - 18 Yes 80

6374 - 33.0 71 63 - 21 - ND

6378 - 11.8 160 61 - 18 - ND

6453 - 2.1 87 47 Yes 30 Yes 57

7071 - 2.0 125 31 - ND ND ND

7419 - 5.0 51 35 - ND Yes ND

3

11

Patient Genomic location Reference Altered
Variation 

situated

Gene 

affected
Gene effect Genotype

6448 chr4: 24572314-24572314 G C exonic DHX15 nonsynonymous SNV DHX15:uc003gqx.3:exon3:c.C664G:p.R222G

2246 chr6: 4032794-4032794 G _ exonic PRPF4B frameshift deletion PRPF4B:uc003mvv.3:exon2:c.1043delG:p.R348fs

2246 chr6: 4032796-4032796 A T exonic PRPF4B nonsynonymous SNV PRPF4B:uc003mvv.3:exon2:c.A1045T:p.S349C

3318 chr18: 34901838-34901838 G A exonic CELF4 nonsynonymous SNV CELF4:uc002laf.2:exon3:c.C364T:p.R122W
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detected variation in the DNA sequence. Gene affected: The gene that is affected by the variation the DNA sequence. 

Gene effect: nonsynonymous SNV (Single Nucleotide Variation) alters the amino acid sequence of a protein, 

Frameshift deletion: a number of nucleotides that is deleted in the DNA sequence. Genotype: Characteristics of the 

detected variation. 
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General Discussion 

ABSTRACT 

This thesis is divided into four sections in which we aim to develop and apply statistical approaches to understand the 

meaning of genome wide molecular data determined in the cells of patients with Acute Myeloid Leukemia. Central in 

the studies is one group of patients that have abnormalities in the gene called CEBPA. Although we addressed very 

specific biological questions regarding CEBPA in AML, the statistical approaches that are presented can also be used 

for other groups of patients. In this Chapter, we discuss potential future research directions and the results in an 

integrated manner. 

IDENTIFICATION OF POTENTIAL FUNCTIONAL REGIONS IN THE GENOME  

In Chapter 2, 3 and 4 we describe the development, implementation and application of HAT(SEQ) (Hypergeometric 

Analysis of Tiling-arrays and Sequence data), a method to detect potential functional regions in the genome defined 

with chromatin immunoprecipitation on chip (ChIP-on-chip) or by massively parallel DNA sequencing (ChIP-Seq) data. 

Together with HATSEQ, multiple other methods74,147,151,240-242 have been developed to analyze tiling-array and NGS 

data with the purpose to define potential functional regions (regions-of-interest, ROI). The various methods use 

different statistical approaches and therefore, if these methods are used to analyze the same dataset, differences in 

the results can be found. An obvious question is therefore: "What is the best method to use?”. 

The most common approach that is used to test the performance of different methodologies is by overlaying the 

detected regions. It has been shown that different methodologies do show significant overlap in detected regions95. 

It is very likely that these similarly detected regions are represented by genomic regions with high signals (read depth 

or intensity values). The differences in detected regions between various methodologies are likely the regions with 

subtle changes (low read depth or intensity values) or an “unexpected” size of the region. A reason why one 

methodology may detect a particular region whereas another does not, may be because methodologies can be 

designed and optimized for the analysis of one type of tiling-array or ChIP-Seq application; the expected signal and/or 

size of the binding region is then modeled. Unfortunately, there is no golden standard that defines such parameters 

of candidate regions as it depends on the biological experiments (e.g. protein properties). Thus, overlaying the 

detected regions using different methodologies will not per definition define true binding regions but only emphasizes 

the similarity of detected regions between the methodologies. 

In general, the most straightforward way to measure the performance of a methodology is by validating each detected 

candidate region by directed PCR and Sanger sequencing243. However, this process is expensive and time consuming 

when even tens of candidate regions need to be validated. In general, hundreds or thousands of candidate regions 

can be detected in a single experiment, and consequently, PCR-Sanger sequencing is not an option to validate all ROIs. 
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An approach to test the performance of a method can be by using in silico data sets244-248 (e.g. simulated data sets). 

In these simulated data sets, the “true binding regions” and background-noise-signal (technical variation) is included. 

However, a disadvantage of in silico data sets is the applicability of the model. For example, a true binding region in a 

biological experiment for protein-DNA-binding depends on the properties of the protein, such as flexibility, binding-

strength, molecular conformation and/or the interaction with other molecules. The signal and size of the binding 

regions are therefore affected by the properties of the protein. Thus the creation of in silico data set requires many 

well characterized (validated) binding regions among different types of biological experiments to model true-binding 

regions. 

Coming back to the initial question, “What is the best method to use?” appears to be a too generic question as the 

choice of the best method depends on the exact research question. As an example, if one is interested in the genes 

that are in close proximity of the top enriched candidate binding regions, the majority of methodologies will likely give 

very similar results. However differences in results between methodologies may occur if one is interested in the motifs 

(instead of neighboring genes) among the (top) detected binding regions.  

Motif analysis is a straight-forward approach to benchmark the detected binding regions determined using a particular 

methodology. It could for instance address the question whether expected consensus binding sites are detected. Such 

findings may help deciding which methodology to choose. It is important to note that in the end, laboratory 

experiments are indispensable to demonstrate the biological significance of particular detected region. For instance 

in case transcription factor binding regions are identified by means ChIP-on-chip or ChIP-Seq, these interactions 

should be validated using ChIP-PCR and possibly using a combination in functional experiments to demonstrate the 

real meaning of such interactions.  

The advantage of our methodology is that it detects candidate regions without defining a priori the expected size of 

the ROI, and is therefore applicable for different biological experiments (protein-DNA-binding, DNA-methylation, 

histone modifications). Although we are able to easily follow-up biological relevance of the detected binding regions, 

data integration (e.g. with gene expression profiles) may be the key to gain more insights in the disease state as these 

approaches can speed up the identification of critical leukemogenic hits. 

IDENTIFICATION OF C/EBPα TARGETS BY PROMOTER BINDING AND mRNA CHANGES 

A powerful technology to detect potential functional regions on the genome is by using tiling-array (e.g. ChIP-on-chip) 

or by massive parallel DNA sequencing (e.g. ChIP-seq) data. The binding of proteins to the DNA does not necessarily 

result in changes of mRNA expression levels (relative gene activation or repression can be measured with the use of, 

e.g. gene expression profiling). Integration of e.g. ChIP-on-chip or ChIP-seq with gene expression profiles (GEP) is of 

great importance to get better understanding in the involved pathways and the exact functional role of transcription 

factors on gene expression regulation (such as for CEBPA). Such results can then be instrumental for the development 
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of novel targeted therapies for specific subtypes in AML. Although ChIP-on-chip or ChIP-seq and gene expression data 

sets are widely used, it is not straightforward to integrate data sets as these procedures are not standard. 

In Chapter 6 we provide data to demonstrate that C/EBPα may not only act as an activator but also as a repressor of 

transcription. We proposed that absence of C/EBPα is one of the transforming events towards mixed myeloid/T-

lymphoid leukemia. In particular T-cell related genes, that are upregulated when C/EBPα is absent, are predicted to 

be targets of C/EBPα and repressed in the presence of this transcription factor. Such transformation effect is likely to 

be caused by a very complex network of relationships between proteins, motifs and epigenetic regulation, such as 

DNA-methylation. In addition, our results are detected in a 32D cell line model, and may not be identical to the human 

situation. The use of (public) ChIP-on-chip or ChIP-Seq data sets of the identified binding-proteins, gene expression 

and DNA-methylation profiles in large cohorts of AML samples will undoubtedly contribute to further insights.  

THE IMPORTANCE OF INTEGRATIVE AND COMBINATORIAL ANALYSES OF GEP AND 

DMP 

The use of gene expression profiling (GEP), to measure changes in mRNA expression levels in patient samples, has 

become very important in cancer research because of its wide applicability18,24,61,62. An example is the discovery of 

previously unrecognized subgroups18. However, measurements of mRNA expression levels is only one type of 

disturbance that may occur in malignant cells. Another type of disturbance in malignant cells are changes in DNA-

methylation249, which can be measured in patient samples using DNA-methylation profiling (DMP)250. Relations 

between DNA-methylation and mRNA expression in AML are known to exist251, however no comprehensive integrative 

analysis has been performed between GEP and DMP so far in AML. Combining these data sets may result in unique 

cancerous patterns that characterizes subgroups in AML. There are two major challenges: the development of a 

statistical approach to combine both data sets, and secondly the identification of novel subgroups in AML which are 

not artifacts induced by the statistical approach. In Chapter 9 we show with an unsupervised analysis that the 

combined data sets revealed two unrecognized subgroups in AML. These two subgroups could not be identified using 

GEP or DMP alone18,58.  

There are still questions to be addressed to learn more about the biological relations between gene expression and 

DNA-methylation. Question such as, “how does DNA-methylation influences the change of gene expression for a 

specific AML subtype?” will undoubtedly contribute to further insights. This is particularly of interest for patient groups 

that have malignant cells affected by both abnormal gene expression and DNA-methylation levels.  

EVALUATION OF TREATMENT EFFECTS FOR PATIENT SUBGROUPS REQUIRES LARGE 

STUDY-SIZES 
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The identification of different subtypes in AML is especially of importance as it can be used in treatment 

protocols35,228,252,253. We needed a large cohort of 1182 normal karyotype patients to show that favourable outcome 

is mainly observed in AML with CEBPAdm and not in CEBPAsm 178 (Chapter 7). In addition, we showed that concurrent 

mutations occur more frequently in CEBPAsm than in CEBPAdm AML and affects outcome, e.g. CEBPAsm is dominated 

by concurrent NPM1 and/or FLT3 internal tandem duplication (ITD) mutations. We therefore proposed that only 

CEBPAdm should be considered as a separate entity in the classification of AMLs. The importance of CEBPAdm as a 

separate entity is stressed by the notion that various genetic and cytogenetic abnormalities in AML have clinical value 

as they may predict disease outcome and response to treatment254. To address this question, thus the impact of 

allogeneic and autologous Hematopoietic Stem Cell Transplantation (alloHSCT, autoHSCT respectively) in comparison 

to chemotherapy consolidation, required even more patient samples. By combining clinical data from Dutch-Belgian-

Swiss Hemato-Oncology Cooperative Group (HOVON/SAKK) and German-Austrian AML Study Group (AMLSG) trials 

we compiled 5724 patients. The number of patients that accomplished to our selection was however only 124 

CEBPAdm patients (Chapter 8). These were subsequently split into smaller subgroups based on how these patients 

were treated. A challenge in the analysis is to overcome the time-to-treatment bias from the no-transplant group to 

the alloHSCT or autoHSCT groups at the time-point of HSCT. Without correction for the time-to-treatment bias, the 

results in terms of outcome may be misleading or even incorrect because patients that received alloHSCT or autoHSCT 

treatment are consolidated after chemotherapy. We were able to show that patients receiving an alloHSCT or 

autoHSCT in first CR, showed significantly less relapses compared to patients receiving chemotherapy. Meaning that 

relapse-free survival (RFS) was significantly superior in patients receiving an alloHSCT or autoHSCT in first CR compared 

to patients receiving chemotherapy. However, the superior RFS after alloHSCT and autoHSCT did not translate in a 

significant better overall survival (OS). This may be caused due to a high second complete remission rate for patients 

that received intensive chemo treatment. Thirty-eight out of 70 patients relapsed after intensive chemo therapy, and 

only 6 out of 38 patients relapsed after receiving alloHSCT or autoHSCT treatment. It seems that alloHSCT is a good 

option in first CR, but an alternative and not unreasonable strategy would be to postpone the alloHSCT in first CR and 

keep the option of alloHSCT for salvage for the restricted fraction of patients after relapse. Our data supports both 

strategies, on the one hand an alloHSCT or autoHSCT in first CR and on the other hand intensive chemotherapy as 

consolidation in first CR and an alloHSCT in case of relapse. An important notion is however that patients have to be 

well informed about the risks and consequences of alloHSCT and autoHSCT in first CR. Recent findings showed 

frequently associated of CEBPAdm with GATA2 zinc finger 1 mutations255,256, and that GATA2 mutations are associated 

with favorable outcome compared to other GATA2wild-type genotypes. Although no significant differences in outcome 

were observed between the groups GATA2mutant/CEBPAdm versus GATA2wild-type/CEBPAdm, it requires further 

investigation with even larger cohorts to investigate the exact role of mutant GATA2 on top of CEBPAdm in terms of 

patients receiving an alloHSCT or autoHSCT in first CR. 

NEXT-GENERATION SEQUENCING AND THE DISCOVERY OF AML SUBTYPES 
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The ultimate goal in cancer research is the development of personalized treatment based on the specific cancerous 

patterns in a single patient. The introduction of next-generation sequencing technology257 may be a first step in this 

process as it allows us to accurately characterize all the abnormalities for a single patient. However, the generated 

data that need to be processed, analysed and confirmed may remain a challenge for the coming decennia. So far, 

microarray experiments (with relatively limited resolutions compared to NGS data) are intensively used to find groups 

of patients with similar cancerous patterns (denoted as subtype) 18. Although many subtypes are already identified 

and recognized by the World Health Organization228, it is highly conceivable that more AML subtypes do exist but are 

hidden due to the complex relationships of molecules in cancerous cells.  

A challenge is to find these AML subtypes and to infer whether these subgroups are "true" and not artefacts induced 

by the inherent tendency of the probabilistic models. A "true" subtype of AML is defined as a group of samples that 

can be identified with common features, such as common molecular aberrations and/or clinical responses. Ideally, 

AML subtypes can be discovered by: 1. analyzing various data sources of the same samples in an integrative manner, 

such as gene expression, DNA-methylation, microRNAs and pathways. 2. Using high data-resolutions, and 3. Using a 

high number of patient data.  

The use of NGS technology will cover the first two points. The third point is crucial as it may reveal the existence of 

subtypes that are only seen in low frequencies, and importantly it will increase the computational power to find with 

high confidence (novel) AML subtypes. So far, small numbers of patient samples is the most important limiting factor 

in integrative studies, and for the detection of AML subtypes. As an example, if multiple data sets are combined (point 

1) that have high genomic coverage (point 2), it will result in an exploding number of features that heavily increases 

the number of computations (e.g. degrees of freedom increases). This suggests that it becomes harder to find true 

positive relationships if only point 1 and 2 are followed. This can particularly become a problem as we enter the 

sequencing era where the genome coverage is massively increased without massively increasing the number of 

samples.  

A key to continue expanding our knowledge about diseases such as leukemia (with the use of NGS data) is to share 

data across the world and to make IT frameworks accessible for data sharing and computations. Without such as an 

approach, and under the assumption of continuous increase of high data-resolutions but steady (low) sample sizes, 

the balance is disturbed and leads to the "curse of dimensionality258". Which may result in a dramatically increase of 

false positives. Validation of the results will be stressed even more. 

NGS technology can nowadays be of great value in many other applications such as for the detection of gene mutation 

or the determination of binding regions of proteins, but also to support the analysis of conventional experiments 

(tiling-arrays) in applications such as the detection of AML subtypes (Chapter 9). In contradiction to the statistical 

approaches that are known for tiling-array experiments, NGS data analysis has started very recently. The required 
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statistical approaches are still immature and need to be developed, optimized, and validated. A new statistical-era for 

NGS data analysis has just been started. 
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SUMMARY 

This thesis consists out of four sections: 1. the creation of a statistical methodology for the detection of candidate 

regions in the genome using tiling-array or next-generation sequencing technology. 2. Applications of the newly 

developed method to study DNA-interaction of wild-type and mutant C/EBPα, and to unravel the role of C/EBPα in 

transformation of cells with myeloid/T-lymphoid features. 3. Analysis of the molecular and clinical behaviour of one 

specific subtype of human leukemia: patients with mutations in CEBPA, the gene encoding C/EBPα. 4. Discovery of 

specific AML subtypes using combined gene expression and DNA-methylation profiles by bioinformatical approaches 

in a cohort of human AML.  

The first section (Chapter 2 to 4) describes a novel tool to analysis data obtained from tiling-array hybridizations and 

next-generation sequencing of DNA obtained from, e.g. chromatin immunoprecipitation (ChIP) experiments. These 

technologies are frequently used to address fundamental biological questions, such as: “Where does a transcription 

factor bind to the DNA?”, “Can we discriminate active from inactive chromatin in the genome?” Or “Can we identify 

methylated regions in the genome?”. These questions may lead to better understanding of protein-DNA-interactions, 

gene activation or the identification of important tumour suppressor genes that are repressed as the result of DNA-

methylation. By array hybridization or next-generation sequencing millions of signal data-points on the genome are 

determined. To detect biological relevant regions, signals should be discriminated from non-specific signals 

(background/ technical variation) to minimize the number of false positives. Candidate regions in the genome are 

defined by an increase of the signal (read depth or probe intensity) but depends on the type of experiment. There are 

no standard criteria that define the signals of the candidate regions. So far multiple methods have been developed 

for the detection of candidate regions but many of these methods are designed for one particular type of experiment 

and/or require various user defined parameters to model a candidate region, such as maximum bandwidth, the 

minimum number of data-points in a region or a minimum signal intensity. In Chapter 2 we describe our statistical 

framework called HAT (Hypergeometric Analysis of Tiling-arrays) to more accurately detect candidate regions that are 

the result of hybridization of chromatin immunoprecipitated DNA-fragments to tiling-arrays. We show that HAT has 

superior advantages over existing methodologies as it detects candidate regions by specifying only one parameter, 

the significance level α. We detected candidate regions in various tiling-array experiments such as ChIP-on-chip, 

MeDIP-on-chip or modified histone pool down experiments. 

Although the successes of HAT, we are passing a phase where next-generation sequencing technology is replacing 

tiling-array technology. In Chapter 3 we describe HATSEQ (Hypergeometric Analysis of Tiling-arrays and Sequence 

data), which uses the statistical framework of HAT but with substantial improvements so that it can be applied to 

next-generation chip sequencing data. A comparison with existing ChIP-Seq methodologies showed strong overlap in 

the detection of candidate regions but our method showed consistently better delineation of the region boundaries 

and therefore more specificity for the actual binding site. In addition, HATSEQ includes analysis to address the 
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biological meaning of the detected candidate regions and, includes a graphical-user-interface that lowers the barrier 

for researcher to analyze their data without the need of scripting languages.  

In Chapter 4 we used HAT for the detection of viral integration sites that potentially harbour new tumour suppressor 

genes in a so called MeDIP-on-chip dataset. This resulted into the identification of a tumour suppressor gene that is 

associated with outcome in AML. In the second section (Chapter 5 and 6) we studied the molecular mechanisms of 

action and DNA-binding of C-terminal mutant C/EBPα (Chapter 5) and wild-type C/EBPα (Chapter 6) in a myeloid cell 

line model using ChIP-on-chip, and by utilizing our previously developed model (HAT). For the latter experiment we 

detected binding-partners of C/EBPα that are associated with T-cell development. This is especially of interest because 

it has previously been shown that silencing of CEBPA expression levels in AML was negatively correlated with the 

expression levels of T-cell related genes. We therefore pursued the relation between CEBPA expression levels and the 

downregulated expression levels of T-cells genes. We propose a functional role of C/EBPα among the transforming 

events that drives the development of mixed myeloid/T-lymphoid leukemia. 

In the third section of this thesis (Chapter 7 and 8) we investigated a group of patients carrying a mutation in the gene 

CEBPA. In Acute Myeloid Leukemia (AML), CEBPA mutations can roughly be separated into two subgroups, i.e., those 

with a single mutation (CEBPAsm) and those with double mutations (CEBPAdm). In Chapter 7 we investigated the clinical 

outcome and gene expression profiles of CEBPAdm versus CEBPAsm and the effect of concurrent gene mutations 

(NPM1/ FLT3ITD). We show for CEBPAdm patients a lower frequency of concurrent mutations compared to CEBPAsm 

patients. The outcome for CEBPAsm patients is dominated by concurrent mutations in the genes NPM1 and FLT3 

(FLT3ITD). We report that CEBPAdm is an independent prognostic factor for favourable outcome. In support of the 

prognostic differences between CEBPAdm and CEBPAsm, striking differences between the gene expression profiles are 

detected. Patient with CEBPAdm expressed a unique gene expression signature that allows further 

classification/refinement of AML whereas this was not possible for CEBPAsm patients. For the group of CEBPAdm 

patients we describe in Chapter 8 the effect of post remission allogeneic and autologous hematopoetic stem cell 

transplantation (alloHSCT, autoHSCT respectively) compared to CEBPAdm patients consolidated with chemotherapy. 

We show that adults with AML with the distinctive CEBPAdm genotype benefit from alloHSCT and autoHSCT in first 

complete remission (CR) with respect to relapse-free survival (RFS) compared to patients consolidated with 

chemotherapy. This benefit is not seen in overall survival (OS), apparently due to a high second CR rate after salvage 

therapy. However, there was a trend for a better OS for alloHSCT, but not for autoHSCT performed in first CR. 

In the final section (Chapter 9) we inferred that novel groups of AML can be detected by combining gene expression 

(GEP) and DNA-methylation profiles (DMP). It has been shown in previous studies that mutations in splice factor (SF) 

genes occur frequently in Myelodysplastic Syndromes (MDS), including Refractory Anemia with Ring Sideroblasts 

(RARS), Refractory Anemia with Excess of Blasts (RAEB) or transformation (RAEB(t)). These SF-gene mutations, 

although less frequently, have also been reported in human acute myeloid leukaemia’s (AML). By using both GEP and 

DMP-dataset we assessed the differences and similarities between MDS and AML with SF-gene mutations. The 
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combined dataset resulted into an optimal hierarchical clustering containing 18 patient clusters. Among these clusters 

we identified, besides previously identified AML subgroups also two novel AML subgroups. These two subgroups were 

not found by using GEP or DMP alone. Both clusters (cluster number 3 and 11) contain patients that are enriched for 

RAEB(t) cases and splice factor mutations. However there are differences, cluster 3 is enriched for mutations in splice 

factor SRSF2 whereas cluster 11 is significantly enriched for mutations in splice factor U2AF35 and SF3B1. Another 

major difference is the enrichment for N-RAS and K-RAS mutations in cluster 3. The most discriminative novel cluster 

11 presented AMLs with unique erythroid features based on the following findings: 1. Enrichment of pathways 

associated with erythroid development, when differentially expressed and methylated genes were analysed. 2. High 

percentages of erythroblasts. 3. Presence of patient samples with a RAEB or a RAEBt. 4. Frequent appearance of ring 

sideroblasts. Ours is the first report of the clustering of splicing mutants in human neoplasia using both gene 

expression and DNA-methylation profiles. 
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SAMENVATTING 

Acute Myeloïde Leukemie (AML) is een vorm van leukemie waarbij de uitrijping van bloedcellen op een kwaadaardige 

manier verandert. Alle bloedcellen worden gemaakt in het beenmerg. In een normale (gezonde) situatie zullen onrijpe 

hematopoietische stamcellen in het beenmerg via verschillende differentiatie-stadia uitrijpen tot functionele 

bloedcellen: de rode bloedcellen, witte bloed cellen en bloedplaatjes. Dit proces van bloedcelproductie gebeurt 

dagelijks en met miljoenen tegelijk. In een abnormale (ongezonde) situatie kunnen deze cellen ongedifferentieerd 

blijven. De cellen hebben dan geen functie en kunnen vervolgens de normale (gezonde) cellen in het beenmerg en 

bloed verdringen, met als resultaat een te kort aan normale rijpe bloedcellen. Om patiënten goed te kunnen 

behandelen moeten we meer weten over de genetische afwijkingen die ten grondslag liggen aan de maligniteit. Er is 

al veel onderzoek gedaan naar de maligniteit in patiënten met AML, zo is bekend dat AML een heterogene ziekte is, 

dat wil zeggen dat het niet één ziekte is maar een verzameling van aandoeningen. Het is ook bekend dat AML vaak te 

wijten is aan genetische afwijkingen. De meest bekende zijn chromosomale veranderingen zoals inv(16), of 

herschikkingen van de chromosomen zoals gebeurt bij translocatie t(15;17) en t(8;21). Hierdoor kunnen delen van 

twee losse genen bij elkaar gebracht worden waardoor vervolgens een nieuw fusie-gen ontstaat. Andere bekende 

afwijkingen in AML zijn subtiele mutaties in kanker-kritische genen, zoals “Internal Tandem Duplications” in FLT3 

(FLT3ITD) of mutaties in nucleophosmin (NPM1) of "CCAAT enhancer binding protein alpha" (CEBPA). Verder is bekend 

dat genetische afwijkingen gerelateerd zijn met prognose. Ondanks de vele verrichtte studies en de daardoor 

verkregen inzichten, worden nog steeds nieuwe genetische afwijkingen in patiënten met AML gevonden. Sub 

classificatie van patiënten zal in de toekomst dan ook toenemen.  

In dit proefschrift wordt de rol van C/EBPα in myeloïde leukemie nader onderzocht en in het bijzonder bij één 

specifieke groep van patiënten; namelijk die met een afwijking in het gen dat codeert voor C/EBPα. C/EBPα is één van 

de master regulatoren voor myeloïde differentiatie. Een gemuteerd CEBPA codeert voor een niet of deels functioneel 

C/EBPα-eiwit dat effect heeft op de cel differentiatie. Daarnaast wordt er in dit proefschrift een statistische methode 

beschreven dat ontwikkeld is om genoom-breed eiwit-DNA interacties te detecteren met behulp van zogenaamde 

tiling-array en next-generation sequencing technologie (NGS). De methode is vervolgens gebruikt om virale integratie-

sites te detecteren die mogelijk samenhangen met nieuwe tumor suppressor genen. Verder werd de technologie 

toegepast om (gemuteerde) C/EBPα-DNA interacties te identificeren en te associëren met gen-expressie. Daarbij werd 

de rol van C/EBPα in myeloïde/T-lymfoïde transformatie geanalyseerd. Verder werd voor deze groep van patiënten 

het effect van postremissie allogene en autologe hematopoietische stamceltransplantatie onderzocht. Tot slot zijn er 

nieuwe AML subgroepen geïdentificeerd door gen-expressie data en DNA methylatie data te combineren. 

In de eerste sectie (hoofdstuk 2, 3 en 4) wordt een statistische methode beschreven die we hebben ontwikkeld om 

data te analyseren die verkregen zijn met behulp van tiling-array of next-generation sequencing technologie. Deze 

technieken kunnen worden gebruikt om fundamentele biologische vragen te beantwoorden, zoals: “Waar binden 
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transcriptie factoren op het DNA?”, “Kunnen we actief en inactief chromatine op het genoom van elkaar 

onderscheiden?” of “Kunnen we gemethyleerde gebieden identificeren in het genoom?”. Het beantwoorden van deze 

vragen kan leiden tot een beter begrip van bijvoorbeeld eiwit-DNA interacties, gen activering of de identificatie van 

belangrijke tumor suppressor genen die onderdrukt worden als gevolg van DNA-methylering. Door gebruik te maken 

van array hybridisatie of next-generation sequencing kunnen miljoenen datapunten genoom-breed gemeten worden. 

De signalen die kandidaat gebieden representeren moeten vervolgens onderscheiden worden van niet specifieke 

signalen (achtergrond/technische variatie). De kandidaat gebieden worden gedefinieerd door een toename van het 

signaal, maar er zijn geen definities die a priori beschrijven wat een kandidaat gebied is (zoals bijvoorbeeld de grootte 

of sterkte van het signaal). Dit kan namelijk verschillen tussen de verschillende typen experimenten. Tot dusver zijn 

er verschillende methoden ontwikkeld voor de detectie van kandidaat gebieden. Sommige van deze methodieken zijn 

ontworpen voor één bepaald type experiment en kunnen meerdere instellingen vereisen om een kandidaat gebied te 

beschrijven, zoals de minimale sterkte van het signaal, maximale breedte van het kandidaat gebied en minimaal aantal 

datapunten dat voor een kandidaat gebied moet worden gemeten. In hoofdstuk 2 wordt een door ons ontwikkelde 

methode, genaamd HAT (Hypergeometrische Analyse van Tiling-arrays) beschreven om kandidaat gebieden te 

identificeren. We laten zien dat HAT voordelen heeft ten opzichte van andere bestaande methodieken. HAT kan 

namelijk kandidaat gebieden detecteren in verschillende type tiling-array experimenten, zoals ChIP-on-chip en MeDIP-

on-chip, zonder extra kennis nodig te hebben over de te verwachte signaalsterkte/ grootte van het kandidaat gebied. 

Alhoewel HAT succesvol is toegepast in tiling-array data, passeren we een fase waarin next-generation sequencing 

technologie de tiling-array technologie gaat, zo niet reeds heeft vervangen. In hoofdstuk 3 beschrijven we HATSEQ 

(Hypergeometrische Analyse van Tiling-arrays en Sequence data), gebaseerd op de statistische methode die in HAT 

gebruikt is. HATSEQ heeft aanzienlijke uitbreidingen zodat het ook kan worden toegepast op de nieuwe generatie 

ChIP-sequence data. Als we de resultaten van HATSEQ vergelijken met die van andere methoden, dan zien we een 

grote overlap in de gedetecteerde kandidaat gebieden. Desondanks zijn de gebieden gedetecteerd door HATSEQ 

specifieker. Bovendien kan HATSEQ de gedetecteerde kandidaat gebieden bestuderen op hun eventuele biologische 

betekenis, zoals de aanwezigheid van motieven en/of verrijking voor specifieke pathways. HATSEQ is overigens 

ontwikkeld met een grafische gebruikers interface zodat onderzoekers zonder kennis van programmeertalen de 

methode kunnen toepassen. In hoofdstuk 4 laten we in een MeDIP-on-chip experiment zien dat virale integratie-sites, 

die mogelijk samenhangen met nieuwe tumor suppressor genen, gedetecteerd kunnen worden. We hebben een 

tumor suppressor-gen geïdentificeerd dat geassocieerd is met de overleving van patiënten met AML. 

De tweede sectie van mijn proefschrift (hoofdstuk 5 en 6) bevat onderzoek waarbij we de functionele rol van de 

transcriptie factor C/EBPα in myeloïde cel line modelsystemen hebben bestudeerd, door gebruik te maken van ChIP-

on-chip technologie. We hebben daarvoor gebruik gemaakt van de door ons eerder ontwikkelde methode, HAT. In 

hoofdstuk 5 bestuderen we de “binding-sites” van C-terminal mutant C/EBPα en in hoofdstuk 6 is de moleculaire 

functie van C/EBPα onderzocht. In de loop der jaren is veel inzicht verkregen in de rol van C/EBPα in hematopoietische 

ontwikkeling, maar de directe “binding-sites” en de associatie met veranderingen in mRNA expressie is nog 
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grotendeels onbekend. Zo laten we in hoofdstuk 6 zien dat we een groep van genen gedetecteerd hebben waar 

C/EBPα in staat was om te binden aan promotor sequenties, en de expressie van de gerelateerde genen verlaagd was 

in een sub groep van AML patiënten, de zogenaamde groep van CEBPA-silenced AML patiënten. Deze experimenten 

ondersteunen de hypothese dat C/EBPα niet alleen kan fungeren als een transcriptionele activator maar ook als een 

repressor van genen. Onze experimenten lijken er vooral op te wijzen dat expressie van genen, die van belang zijn bij 

ontwikkeling van T-lymfocyten en waarvan de promotor een interactie aangaat met C/EBPα, geremd wordt door deze 

transcriptie factor. Dit is vooral van belang omdat al eerder aangetoond was dat het volledig uitschakelen van CEBPA, 

geassocieerd was met de expressie van T-cel gerelateerde genen.  

In de derde sectie van dit proefschrift (hoofdstuk 7 en 8) is er onderzoek gedaan aan een groep van AML patiënten 

met mutaties in het CEBPA gen. AML patiënten met CEBPA mutaties kunnen kortweg in twee subgroepen worden 

onderverdeeld, namelijk die met een enkele mutatie (CEBPAsm) en die met dubbele mutaties (CEBPAdm). Bij CEBPAdm 

patiënten zijn meestal beide allelen betrokken, zodat in de leukemie cellen van deze patiënten geen normaal C/EBPα 

aanwezig is. In hoofdstuk 7 wordt de prognostische waarde en de gen-expressieprofielen van CEBPAdm versus CEBPAsm 

onderzocht. Verder is de rol van andere gen mutaties, namelijk NPM1 mutaties en FLT3ITD bestudeerd. We tonen 

aan dat NPM1 mutaties en of FLT3ITD vaker voor komen bij CEBPAsm patiënten dan bij CEBPAdm patiënten met AML. 

Vervolgens laten wij zien dat CEBPAdm een onafhankelijke prognostische factor is voor een gunstige uitkomst. Voor 

CEBPAsm patiënten geldt dat de prognostische waarde wordt gedomineerd door mutaties in NPM1 en/of FLT3ITD. Tot 

slot zijn er in de gen-expressieprofielen opvallende verschillen gedetecteerd. Patiënten met CEBPAdm kunnen worden 

herkend aan een uniek gen-expressieprofiel. Dit bleek niet mogelijk voor de CEBPAsm groep. In hoofdstuk 8 bestuderen 

we het effect van postremissie allogene en autologe hematopoietische stamceltransplantatie (alloHSCT, autoHSCT 

respectievelijk) in CEBPAdm patiënten. De effecten van de HSCT worden vergeleken met CEBPAdm patiënten die alleen 

chemotherapie hebben gehad. We tonen aan dat CEBPAdm patiënten profiteren van alloHSCT en autoHSCT in de 

eerste complete remissie met betrekking tot “relapse-free survival” in vergelijking met patiënten die alleen 

chemotherapie gehad hebben.  

In de vierde en laatste sectie (hoofdstuk 9) laten we zien dat nieuwe patiënt groepen in AML gedetecteerd kunnen 

worden door gen-expressie (GEP) en DNA methylatie profielen (DMP) te combineren. In eerdere studies was 

aangetoond dat mutaties in splice factor (SF) genen voorkomen bij myelodysplastische syndromen (MDS), met 

refractory anemia en ring sideroblasts (RARS), en met refractory anemia met excess of blasts (RAEB) of in 

transformatie (RAEBt). Deze splice factor gen mutaties zijn ook gedetecteerd in AML maar in mindere mate. Door 

gebruik te maken van zowel GEP en DMP-datasets konden we de verschillen en overeenkomsten tussen RAEB, RAEBt 

en AML met splice factor gen mutaties analyseren. Met de gecombineerde GEP/DMP-dataset hebben we een 

optimale hiërarchische clustering met 18 clusters verkregen. De clusters bevatten, naast de eerder gevonden AML 

subgroepen ook twee nieuwe AML subgroepen. Deze twee subgroepen werden niet gevonden door gebruik te maken 

van alleen de GEP of alleen de DMP-dataset. De twee nieuwe clusters (cluster nummer 3 en 11) bevatten patiënten 
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die verrijkt zijn voor RAEB, RAEBt en AML met SF-mutaties. Er zijn echter verschillen tussen clusters: cluster 3 is verrijkt 

voor mutaties in splice factor SRSF2 terwijl cluster 11 verrijkt is voor mutaties in splice factor U2AF35 en SF3B1. Een 

ander belangrijk verschil is dat patiënten in cluster 11 unieke erythroid eigenschappen hebben. Dit is bepaald op basis 

van de volgende bevindingen: 1. verrijking voor gen-pathways die geassocieerd zijn met erythroid ontwikkeling, 2. 

hoge percentages erythroblasten, 3. het veel voorkomen van RAEB of RAEBt patiënten, en 4. het veel voorkomen van 

ring sideroblasts. In tegenstelling zien we deze erythroid verrijking niet in de patiënten van cluster 3. In dit cluster zijn 

N-RAS en K-RAS mutaties vaak aanwezig. Deze mutaties zijn niet gevonden in cluster 11. Met deze studie laten wij als 

eerste zien dat nieuwe subgroepen in AML geïdentificeerd en beter gekarakteriseerd kunnen worden door gen-

expressie en de DNA-methylatie profielen te combineren. 
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ABBREVIATIONS 

TSS Transcription Start Site 

AlloHSCT Allogeneic haematopoietic stem cell transplantation 

AML Acute myeloid leukemia 

AutoHSCT Autologous haematopoietic stem cell transplantation 

BM Bone marrow 

bZIP Basic leucine zipper 

C/EBPα CCAAT/enhancer binding protein alpha (protein) 

CBF Core-binding factor 

CEBPA CCAAT/enhancer binding protein alpha (gene) 

CEBPAdm CEBPA double-mutation 

CEBPAsm CEBPA single-mutation 

ChIP Chromatin immunoprecipitation 

ChIP-on-chip Chromatin immunoprecipitation followed by analysis on array 

ChIP-Seq Chromatin immunoprecipitation followed by sequencing 

CID Cumulative incidence of death  

CIR Cumulative incidence of relapse  

CMP Common myeloid progenitor 

CN Cytogenetical Normal 

CR(1) Complete Remission (First) 

dHPLC Denaturing high performance liquid chromatography 

DMP DNA-methylation profiling 

DNA Deoxyribonucleic acid 

DNMT DNA methyltransferase 

E2 β-estradiol 

EFS Event-free survival 

ER Estrogen receptor 

ERG v-ets erythroblastosis virus E26 oncogene homolog (gene) 

ETO Eight twenty one (gene) 

EVI1 Ecotropic viral integration site 1 (gene) 

FAB French American British 

FDR false discovery rate 

FLT3 FMS-like tyrosine kinase 3 (gene) 

FWER Family-wise error rate 

G-CSF Granulocyte colony-stimulating factor 

GEO Gene expression omnibus 

GEP Gene expression profiling 

Gr1.4 MuLV Graffi 1.4 murine leukemia virus 

GSEA Gene set enrichment analysis 

HAT Hypergeometric analysis of tiling-arrays 

HATSEQ Hypergeometric analysis of tiling-arrays and sequence data 
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HELP HpaII tiny fragment enrichment by ligation mediated PCR 

HR Hazard Ratio 

HSC Hematopoietic stem cell 

IL-3 / -6 Interleukin 3 / -6 

Indel Insertion or deletion 

IP Immunoprecipitation 

iPCR Inverse PCR 

ITD Internal tandem duplication 

MAS MicroArray Suite 

MDS Myelodysplastic syndrome 

MeDIP Myelodysplastic DNA immunoprecipitation 

MeDIP-on-chip Myelodysplastic DNA immunoprecipitation followed by analysis on array 

methyl-seq DNA-methylation profiling by deep-sequencing 

mRNA Messenger RNA 

mRNA-seq mRNA profiling by deep-sequencing 

mVIS Methylated viral integration site 

MYH11 Myosin, heavy chain 11 (gene) 

NOTCH1 Notch homolog 1 (gene) 

NPM1 Nucleophosmin (gene) 

OS Overall survival 

PCR Polymerase chain reaction 

PTP4A3 Protein tyrosine phosphatase type IVA, member 3 

PWM Position Weight Matrices 

RAEB(t) Refractory anemia with excess blasts (in transformation) 

RFS Relapse-free survival 

RIM Retroviral integration mutagenesis 

RMA Robust multi averaging 

RNA Ribonucleic acid 

ROI Region-of-interest 

RQ-PCR Quantitative real-time reverse transcription PCR 

RT-PCR Reverse transcription PCR 

SNP Single nucleotide polymorphism 

SNV Single nucleotide variation 

STAT Signal transducer and activator of transcription 

TAD Transactivation domain 

TCR T-cell receptor 

TFBS Transcription Factor Binding Sites 

WBC White blood cell 

WES Whole exome sequencing 

WGS Whole genome sequencing 

WHO World Health Organization 
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