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SUMMARY
CanonicalWnt signaling regulates the self-renewal of most if not all stem cell systems. In the blood system, the role ofWnt signaling has

been the subject of much debate but there is consensus that highWnt signals lead to loss of reconstituting capacity. To better understand

this phenomenon, we have taken advantage of a series of hypomorphic mutant Apc alleles resulting in a broad range of Wnt dosages in

hematopoietic stem cells (HSCs) and performed whole-genome gene expression analyses. Gene expression profiling and functional

studies show that HSCs with APC mutations lead to high Wnt levels, enhanced differentiation, and diminished proliferation but have

no effect on apoptosis, collectively leading to loss of stemness. Thus, we provide mechanistic insight into the role of APC mutations

andWnt signaling in HSC biology. AsWnt signals are explored in various in vivo and ex vivo expansion protocols for HSCs, our findings

also have clinical ramifications.
INTRODUCTION

In many tissues, including the blood, intestine and skin,

old cells are eliminated and replenished by newly devel-

oped cells from a small pool of stem cells. This rare popula-

tion of stem cells is located in a specificmicroenvironment,

the niche, and gives rise to several different lineages of

abundant daughter cells (Mendez-Ferrer et al., 2010). The

signals controlling the various stem cell fates (self-renewal,

differentiation, quiescence, apoptosis, and others) are

beginning to be elucidated. A number of evolutionary

conserved pathways are important for the development

and maintenance of adult stem cells, including Notch,

bone morphogenic protein, hedgehog, fibroblast growth

factor, transforming growth factor b, and Wnt signals

(Blank et al., 2008). Among these pathways, the Wnt

pathway is seen as a dominant factor in self-renewal of

many types of adult stem cells (Reya and Clevers, 2005).

Compared with the convincing studies on the role of

Wnt signaling in adult stem cells in skin and gut, a role

for Wnt in adult hematopoietic stem cells (HSCs) has

proved much more difficult to demonstrate (reviewed in

Luis et al., 2012). In studies reporting an important role

forWnt signaling in blood cells,Wnt seemed to be required

for normal HSC self-renewal and therefore for efficient

reconstitution after transplantation (Luis et al., 2011).

Several types of Wnt signaling can be discerned often

referred to as the canonical or Wnt/b-catenin pathway

and the non-canonical pathways (reviewed extensively in

Staal et al., 2008). In the absence of Wnt ligands, cyto-

plasmic levels of b-catenin are kept very low through the
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action of a protein complex (the so-called destruction com-

plex) that actively targets b-catenin for degradation. This

complex is composed of two negative regulatory kinases,

including glycogen synthase kinase 3b (GSK-3b) and at

least two anchor proteins that also function as tumor sup-

pressor proteins, namely Axin1 or Axin2 and APC (adeno-

matous polyposis coli). APC and Axin function as negative

regulators of the pathway by sequestering b-catenin in the

cytoplasm. Hence, inactivating mutations in Apc lead

to higher b-catenin protein accumulation among other

important events controlled by APC. Activation of the

pathway by Wnt leads to inactivation of the destruction

complex allowing buildup of b-catenin and its migration

to the nucleus. In the nucleus, b-catenin binds to members

of the TCF/LEF transcription factor family, thereby con-

verting them from transcriptional repressors into transcrip-

tional activators.

Initial attempts to overexpress a constitutively active

form of b-catenin in HSCs led to an increase in prolifera-

tion and repopulation capacity upon transplantation into

lethally irradiated mice (Reya et al., 2003). However, later

studies using conditional overexpression of a stabilized

form of b-catenin led to a block in multilineage differenti-

ation, and the exhaustion of long-term HSCs (Kirstetter

et al., 2006; Scheller et al., 2006). This resulted in anemic

mice and eventually led to lethality, i.e., the opposite effect

when compared with the improved transplantation setting

reported earlier. These studies have created confusion con-

cerning the importance of Wnt in maintaining numbers

and integrity of HSCs. Similarly, not all loss-of-func-

tion studies have produced clear phenotypes. The Mx-Cre
rs
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Figure 1. Definition of a High Wnt Stem
Cell Signature
(A) Experimental setup. LSK cells from various
APC mutant mice were sorted from bone
marrow, transduced with Cre-GFP retrovirus
and GFP-transduced cells were again sorted
and used for further experiments.
(B) Principal component analysis plots of
all 15 biological samples used in this study.
The percentage of variance captured by each
of the first three principal components is
indicated.
(C) Hierarchical clustering of the various APC
mutants and WT HSCs indicating the top 50
differentially expressed genes and changes
in gene expression.
system has been used to drive deletion of b-catenin (Zhao

et al., 2007) or both b-catenin and its homolog g-catenin

(Koch et al., 2008; Jeannet et al., 2008). However, no

defects were reported in HSC function or cells within

lymphoid tissues. Surprisingly, in vivo reporter assays re-

vealed that the canonical Wnt signaling pathway was still

active in HSCs despite the absence of both b- and g-catenin

(Jeannet et al., 2008). This could imply the existence of an

alternative factor or generation of a hypomorphic allele

permitting low levels of Wnt signaling that would negate

hematopoietic defects. Heroic efforts to knock out the Porcn

gene during hematopoiesis, which encodes an acyltransfer-

ase (porcupine) necessary for acylation of Wnts, enabling

their secretion and binding to the frizzled receptors, have

not resulted in hematopoietic defects; however, there also

were no changes in Wnt signaling (Kabiri et al., 2015).

The reasons for this are presently unknown, but incom-

plete deletion or the lack of need for Wnt secretion have

been suggested (Oostendorp, 2015). This demonstrates

the high complexity and difficulty in generating bona

fide null mutants for canonical Wnts in the hematopoietic

system. Together with studies in which Wnt activity in

HSCs was reported to be close to zero (Fleming et al.,

2008; Luis et al., 2009; Zhao et al., 2007), these findings

suggest that complete absence of Wnt signaling is detri-

mental to HSC function, but that up to a quarter of normal

activity is sufficient for normal function. Our recent find-

ings suggest that these very different results in both gain-
of-function and loss-of-function studies can be largely ex-

plained by differences in levels of Wnt signaling achieved

in different experimental circumstances. That is, when

Wnt signaling is slightly enhanced over normal levels,

HSCs show improved reconstitution capacity. However,

when HSCs express high levels of Wnt signaling, they

completely fail to reconstitute irradiated recipient mice

(Luis et al., 2011). Thus, different levels of activation of

the pathway can account for the discrepancies in previous

studies (Malhotra and Kincade, 2009).
RESULTS

Gene Expression Profiling and Correlation with Wnt

Dosage

Previously, we have used a combination of two different

hypomorphic alleles and a conditional deletion allele of

the Apc gene resulting in a gradient of five distinct levels of

Wnt signaling in vivo. In the Apc1572T and Apc1638N al-

leles, amino acid residues 1572 and 1638 have been targeted

resulting in different levels and lengths of truncated Apc

proteins, consequently leading to different levels of Wnt

pathway activation. Deletion of Apc exon 15 within the

Apc15lox allele was performed ex vivo by using a Cre-

recombinase encoding retrovirus (Figure 1A). LSK cells

from wild-type (WT) mice (Apc+/+) transduced with the

same viral construct were employed as controls for all
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Figure 2. t-SNE Landscape of APC Mutants
(A and B) t-SNE maps of all probe sets. Red colored lines are differentially expressed genes, green are in cluster 15, yellow show both
binding (TCF1/TCF7 or b-catenin), and differential expression. Text labels are shown only for the latter.
(C and G) Cluster 2 and 1 identified in t-SNE.
(D–F, H, and I) Selected genes with their expression in the various Apc mutants.
experiments. Transduced cells were sorted and employed for

gene expression profiling by Affymetrix genome-wide mi-

croarrays. In thecurrent report,we focusedonthedifferences

between WT LSK cells, which efficiently reconstitute recip-

ient mice, and the LSK cells with increased Wnt signaling

activity (Apc1572T, Apc1638N, and the Apc15lox mutant al-

leles). Biological triplicates were used for each condition. As

WTHSCshave lowbut detectable and slightly variable levels

ofWnt signaling, and they form the basis for comparison of

all other conditions, we used six replicates for WT HSCs.

Principal component analysis showed clear separation

of the triplicate arrays per genotype corresponding to the

differentWnt signaling levels (Figure 1B). Hierarchical clus-

tering of the top 50 differentially expressed genes also

revealed a clear separation of the different Wnt signaling

clusters (Figure 1C).
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Biological Processes Correlated with High Wnt Levels

in HSC

Focusing on themost differentially expressed genes, a heat-

mapwas constructed that clearly reveals the differences be-

tweenWTand Apc15lox HSCs (Figure 2A).We used the gene

expression data of all available probe sets across the 15 APC

samples and applied Barnes-Hut t-distributed stochastic

neighbor embedding (t-SNE) to map each individual gene

or probe set into a 2D space. The 2D landscape illustrates

genes/probe sets with similar behavior (Figure 2B). Genes

that have highly correlated expression profiles will be

located in close proximity in the map, whereas uncorre-

lated expression profiles should be far apart in the t-SNE

map. Genes that follow the increase in Wnt signaling clus-

ter in a set of genes composed of known Wnt target genes,

such as Axin2, Tcf7, and Lef1 (Figures 2C–2F). Genes that



are anti-correlatedwith increasedWnt signaling can also be

discerned and include Ccr9 and Cd3g (Figures 2G–2I).

The differential gene expression as detected by micro-

array analysis was validated using digital Q-PCR (Fig-

ure S1A). Checking the biological processes involved in

the differences between low and high Wnt signaling, we

observed gene sets found in Wnt and Notch signaling but

also differentiation into monocytes, myeloid cells, and

B lymphocytes (Figure S1B). No differences were observed

in apoptosis or cell-cycle-related genes.We confirmed these

findings by specifically selecting published gene sets for

these processes and checking whether clustering with the

published gene sets correlated with the Apc mutants. The

differentially expressed genes we found were highly en-

riched in the B lymphoid and myeloid differentiation sig-

natures but not for pro-apoptotic or anti-apoptotic genes

(Figures S1B, S2, and S3).

Apc Mutants Causing High Levels of Wnt Signaling

Inhibit Proliferation but Do Not Change Apoptosis

Ming et al. (2012) reported that HSCs with high Wnt sig-

nals have increased apoptosis due to a high level of Wnt

signaling and impaired self-renewal in HSCs. In their study,

an activated form of b-catenin was used resulting in

increased Wnt signaling in HSCs to the same level as the

Apc1638N mutant used here. We therefore also used a

constitutively active b-catenin conditional allele targeted

the same way as the conditional 15lox APC�/� LSK cells

to check the Axin2 levels as readout for the Wnt signaling

dosage. The b-catenin (DEx3) allele (Harada et al., 1999)

gave 21-fold higher Axin2 levels in LSK cells compared

with WT LSK cells transduced with GFP-Cre, whereas the

1638N resulted in 23-fold and the Apc15lox �50-fold

higher Axin2 mRNA levels. Thus, the Axin2 levels and

hence activation of the Wnt pathway were similar. How-

ever, our gene expression analysis did not show any sig-

nificant differentially expressed genes associated with

apoptosis. In order to study the putative involvement of

apoptosis with a more functional approach, we performed

two different apoptosis assays. First, we assessed apoptosis

by annexin V/7-amino-actinomycin (7-AAD) staining of

the ex vivo transduced LSK cells from Apc WT and

Apc15lox/15lox (Figure 3A). At the beginning of culture, there

was almost no apoptosis in both groups (�4% at day 0).

After 3 days of culture, the percentage of annexin V+

apoptotic cells increased to �16%. However, no difference

was observed between the Apc WT and knockout (KO)

groups. Next, we performed caspase-3 staining in order to

assess the apoptosis rate of ex vivo transduced LSK cells

(Figure 3B). Similar to previous assays, there was hardly

any caspase-3 positivity at the beginning of the culture,

while it was elevated after 3 days of culture. However, again

no difference was observed between the two groups. Subse-
quently, we analyzed the proliferation status of the trans-

duced LSK cells by labeling the cells with proliferation

dye EF670 (Figure 3C). While cells did not proliferate at

the beginning of culture (filled gray histogram), Apc WT

LSK cells proliferated around 4-fold more than Apc KO

LSK cells. Therefore, although a high level ofWnt signaling

does not affect apoptosis, it decreases proliferation of LSK

cells after 3 days of culture.
High Wnt HSCs Show Enhanced Myeloid and

B Lymphoid Differentiation Capacity

Our gene expression analysis revealed that LSK cells with

high levels of Wnt induce upregulation of B and myeloid-

associatedgenes (FigureS2). Inorder toconfirmthisobserva-

tion functionally, we performed in vitro B and myeloid

differentiation assays using the OP9 stromal cell line (Fig-

ure 4). LSK cells were sorted, transduced with the Cre-GFP

retrovirus, and cultured for 14 days on OP9 cells. Apc lox15

LSK cells developed to granulocytes (CD11b+ Gr1+) with

around2-foldhigher frequency, anddeveloped toB cell line-

age (B220+ CD19+) with around 2.5-fold higher frequency

compared with WT LSK cells. Thus, we confirmed by func-

tional assays that Apc mutations leading to a high level

of Wnt signaling enhance differentiation toward B and

myeloid lineages.
DISCUSSION

The Wnt signaling pathway has emerged as the dominant

self-renewal pathway for various adult-type stem cells

and is required for maintenance of embryonic as well as

induced pluripotent stem cells. In the hematopoietic sys-

tem, only mild increased Wnt dosages result in higher

stem cell activity; indeed the overall Wnt signaling levels

in HSC are much lower than those found in intestinal,

skin, ormammary gland stem cells. Nevertheless, complete

loss of Wnt signaling leads to defective self-renewal as

shown in secondary transplantations. This had led to inter-

est in the use of Wnt signaling or factors that modulate

Wnt signaling, such as prostaglandin E2 (PGE2) (Goessling

et al., 2009) or GSK-3b inhibitors (Huang et al., 2012), for

expansion of HSCs ex vivo.

We previously demonstrated that Wnt signaling func-

tions in a strictly controlled dosage-dependent fashion

(Luis et al., 2011). As also shown by several other labora-

tories (Kirstetter et al., 2006; Ming et al., 2012) (Scheller

et al., 2006), high Wnt levels in HSCs eventually lead to

stem cell exhaustion and lack of reconstitution of irradi-

ated recipients. In the current study, we used gene expres-

sion profiling to understand why Apc mutations that lead

to high Wnt signaling (among other defects) in HSCs

would lead to loss of repopulating capacity. Our results
Stem Cell Reports j Vol. 6 j 652–659 j May 10, 2016 655



Figure 3. High Levels of Wnt Signaling
Do Not Affect Apoptosis
(A and B) Sorted BM LSK from Apc WT and
15lox/15lox were transduced with Cre virus
and cultured for 2 days to fulfill Cre recom-
bination activity. After culturing for 2 days
(day 0) and 5 days (day 3), cells were har-
vested and stained with annexin V/7-AAD
(left graph) or active caspase-3 (right
graph). Error bars represent the SD of three
replicates of one independent experiment.
(C) Sorted BM LSK from Apc WT and 15lox/
15lox were transduced with Cre virus,
cultured for 2 days and labeled with 5 mM
proliferation dye EF670orwithDMSO. The left
plot depicts representative histogram plots
and the right graphs show the percentage of
non-proliferative cells (A), proliferative cells
(B), and ratio of A/B. Error bars represent the
SD of three samples from individual mice in
one independent experiment. Two indepen-
dent experiments were done with similar
outcome. *p < 0.05 and **p < 0.01 (Mann-
Whitney U test).
show, both at the genetic level and in functional assays,

increased differentiation, diminished proliferation, and

no effects on apoptosis. The much stronger differentiation

toward mature blood linages coupled with loss of HSC pro-

liferation (see also Figure S4) is expected to lead to lower

reconstitution by HSCs. Collectively, these data explain

the lack of maintaining bona fide stemness in Apc exon

15 deleted HSCs. Thus, instead of increased apoptosis of

HSCs, here we offer another explanation for the loss of

reconstitution capacity induced by high Wnt levels.

An alternative interpretation of our data is that the

observed consequences of Apc mutant alleles are not Wnt

but rather APC dependent. Apc encodes for a multifunc-

tional protein involved in a broad spectrum of cellular

functions (Gaspar and Fodde, 2004). To date, most Apc

mutant mouse models are characterized by tumor pheno-

types that depend completely on Wnt dosage. Apc1638T,

the only targeted Apc mutation that does not affect Wnt

signaling at all, results in homozygous viable and tumor-

free animals, notwithstanding the deletion of the C-termi-
656 Stem Cell Reports j Vol. 6 j 652–659 j May 10, 2016
nal third of the protein containing many functional

domains (Smits et al., 1999, 2000). Deletion of only a few

amino acids encompassing crucial Axin-binding motifs

results in Wnt signaling activation, tumor formation, and

lack of reconstitution by HSCs, as we have shown before

(Luis et al., 2011). Finally, mutations affecting other mem-

bers of the Wnt pathway, such as Gsk3b and b-catenin,

result in levels of signaling activation and hematopoietic

defects that are fully in agreement with our results (Goes-

sling et al., 2009; Huang et al., 2009, 2012; Lane et al.,

2010). Therefore, the most likely explanation is that spe-

cific levels of Wnt signaling are the major determinant of

the observed differential effects on hematopoiesis. In addi-

tion, recent studies using recombinantWnt3a also showed

a dose-dependent effect on HSC biology (Famili et al.,

2015) where high Wnt3a leads to loss of human HSC pro-

liferation in vitro (Duinhouwer et al., 2015), underscoring

the differential effects we also have observed with the

different Apc alleles and correlating exactly with the Wnt

dosages caused by these mutations.



Figure 4. High Levels of Wnt Signaling
Enhances Multilineage Differentiation
Transduced LSK cells from Apc WT and 15lox/
15lox were co-cultured with OP9 stromal
cell line for 14 days, then were harvested,
and assessed by flow cytometry for myeloid
(CD11b and Gr1+) and B cell development
(B220 and CD19+). Error bars represent the SD
of six samples from individual mice from two
independent experiments. Asterisks indicate
statistical significance as follows: *p < 0.05,
and **p < 0.01 (Mann-Whitney U test).
The finding that the Apc 15lox mutant leading to high

Wnt signaling levels is associated with increased numbers

of differentiated cells is not unprecedented. In the intes-

tine, Wnt signaling induces maturation of Paneth cells

that contain active b-catenin and Tcf4 (van Es et al.,

2005), confirming that highWnt signaling levels can drive

differentiation processes.

Other investigators have used a different system to in-

crease Wnt signals in HSCs, namely overexpression of an

oncogenic, constitutively active form of b-catenin (Ming

et al., 2012). They showed an increase in apoptosis using

annexin V/propidium iodide staining from 10% in WT

LSK cells to 35% in high Wnt LSK cells. The reasons for

the differences with our results could be due to differences

in the systems used, although both are expected to lead to

highWnt signaling levels. Possibly activated b-catenin also

negatively affects cell adhesion and homing properties

thereby decreasing exposure to important survival signals

leading to increased apoptosis. It is also noteworthy that

enhanced survival signals are needed to have HSCs survive

in the oncogenic b-catenin system. In addition, Li et al.

(2013) have shown that Apc regulates the function of

HSCs largely through b-catenin-dependent mechanisms,

thus demonstrating that, in both systems, canonical Wnt

signaling is the major factor.

Whatever the exact mechanism, it is clear that Wnt

signaling levels need to be strictly controlled. It is well

possible that somewhat higher Wnt levels, which are detri-

mental to stemness, can be tolerated if HSC survival is

enhanced, which then would lead to better self-renewal at

this somewhat higher Wnt signaling dose. For instance

PI3K/Akt signaling (Perry et al., 2011), as well as expression

of Bcl2 (Reya et al., 2003) can provide such signals. Appar-

ently, high Wnt signaling levels can be tolerated in HSC in
combination with activation of other survival pathways.

Intriguingly, thehighWnt levels in combinationwithonco-

gene activation in acute myeloid leukemia seem to allow

the Wnt pathway to function as a self-renewal factor for

leukemic stem cells (Wang et al., 2010), whereas high Wnt

levels cannot do so in normal HSCs. The different localiza-

tion of normal versus malignant HSCs in the bone marrow

niche (Lane et al., 2011)may also contribute to this differen-

tial outcomeofhighWntdosage andopensup a therapeutic

window targeting leukemic but not normal stem cells.
EXPERIMENTAL PROCEDURES

Mice
Mice were bred and maintained in the animal facilities of Leiden

University Medical Center, in accordance with legal regulations

in the Netherlands and with the approval of the Dutch animal

ethical committee.

Microarray Analysis
In this study, we measured the genome-wide gene expression pro-

files in 21 APC C57Bl/6 mouse samples using Affymetrix mouse

430 2 microarrays for four different conditions; six APCWT, three

APC 15lox/1572T, three APC 15lox/1638N, and three APC 15lox/

15lox mice. 40,000–70,000 sorted LSK cells were stimulated over-

night in serum-free medium (STEMCELL Technologies) supple-

mented with cytokines and transduced by spinoculation with

MSCV-Cre-IRES-GFP. Subsequently, Cre-GFP-expressing LSK cells

were isolated using flow cytometric cell sorting and collected for

RNA expression. RNA of more than 10,000 cells was amplified

and processed using the Encore Biotin module and hybridized to

Affymetrix mouse 430 2.0 Genechip arrays. Differential expressed

geneswere determined using Limma, and geneswere considered to

be differentially expressed ifmRNA levels differ with p% 0.05 after

multiple test correction using Holm.
Stem Cell Reports j Vol. 6 j 652–659 j May 10, 2016 657



The dataset associated with this study has been deposited at

GEO: GSE79495.

Flow Cytometry
Cells were stained in fluorescence-activated cell sorting buffer at

4�C, washed, and measured either on a Canto I or an Aria (BD

Biosciences). Data were analyzed using FlowJo software (Tree Star).

Proliferation, Apoptosis, and Differentiation Assays
For apoptosis, cells were harvested after 2 days (day 0) or 5 days

(day 3) of culture, and stained with either 7-AAD/annexin V (BD

Bioscience), or phycoerythrin-active caspase-3 apoptosis kit (BD

Pharmingen). For the proliferation assay, cells were labeled with

5 mMCell Proliferation Dye eFluor 670 (eBioscience) at day 0. Sub-

sequently, cells were harvested at day 3 and were assessed for pro-

liferation. For differentiation assays, LSK cells were transduced at

day 0 and transferred onto confluentmonolayers of OP9WT. After

14 days, cells were harvested and assessed by flow cytometry for

B and myeloid lineage differentiation.
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