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    Chapter 9   

 HAT: A Novel Statistical Approach to Discover Functional 
Regions in the Genome 

           Erdogan     Taskesen    ,     Bas     Wouters    , and     Ruud     Delwel    

    Abstract 

   Tiling arrays are useful for exploring local functions of regions of the genome in an unbiased fashion. 
The exact determination of those genomic regions based on tiling-array data, e.g., generated by means of 
hybridization with immunopreciptated DNA-fragments to the arrays is a challenge. Many different statistical 
methodologies have been developed to fi nd biological relevant regions-of-interest (ROI) by using the 
quantitative signal intensity of each probe. We previously developed a method called Hypergeometric 
Analysis of Tiling arrays (HAT) for the analysis of tiling-array data, but it is developed such that it can also 
be used to study data derived by genome-wide deep sequencing approaches. Here we applied HAT to 
analyze two publicly available tiling-array data sets. After the detection of statistically signifi cant ROI, these 
are often used in additional analysis for hypothesis testing. We therefore discuss, by using the results of the 
tiling-array experiment, pathway and motif analyses.  
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1        Introduction 

 Tiling arrays are a subtype of microarrays which are designed with 
probes that cover contiguous regions of a genome. The locations 
of probes do not necessarily cover genomic regions that are known 
to be functional, as is the case for gene expression or promoter 
arrays. Therefore tiling arrays differ from these microarrays as they 
are not by defi nition designed to cover known or predicted genes 
in the genome. Moreover, the coverage of probes in unknown 
genomic regions has been useful for exploring the genome in an 
unbiased fashion. Examples of applications for tiling arrays are 
(1) protein–DNA interaction by conducting chromatin immuno-
precipitation (ChIP-on-chip) experiments [ 1 ], (2) epigenetic 
modifi cations by Methyl-DNA immunoprecipitation [ 2 ] (MeDIP-
on-chip), or (3) identifi cation of DNAse hypersensitive sites, which 
can be used to predict regulatory elements such as promoter 
regions, enhancers, and silencers [ 3 ]. Although tiling arrays are 
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useful for genome-wide studies, the coverage of the genome on the 
arrays depends on the species that is being studied. As an example, 
probes can cover the majority of a small genome such as for 
Arabidopsis [ 4 ], whereas probes will cover only contigs in a large 
genome, such as for human. Thus for larger genomes, as is the 
case for mouse or humans, the choice of the content depends on 
the questions one wishes to address using a particular tiling array. 

 Each tiling-array produces quantitative signal intensity for each 
probe by the hybridization of labeled DNA. Normalized probe 
intensities are illustrated by the different peaks in Fig.  1 , where 
the colors indicate the probe signals at different chromosomes. 
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  Fig. 1    Graphical representation of probe intensities in a ChIP-on-chip tiling-array experiment. ( a ) Normalized 
probe intensity of 4.6 million probes among 22 chromosomes. Colors illustrate the different chromosomes 
whereas the length of a lollipop represents the probe intensity. ( b ) Distribution of the probe-intensity values. 
The probe-intensity values are normalized against a reference fi le. Threshold 1 indicates a high threshold 
cutoff, whereas threshold 2 indicates a low intensity cutoff. HAT uses many different threshold cutoffs to 
determine signifi cantly enriched ROI       
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Although single probe hybridization with high signal intensity 
suggests strong hybridization, it is not necessarily the result of 
specifi c hybridization of labeled DNA (illustrated by the probes 
above threshold 1 in Fig.  1a, b ). Multiple contiguous probes that 
show increased signal intensity upon hybridization across a particular 
genomic region are more likely to be the result of true hybridization 
in a biological experiment. These genomic regions are denoted as 
a putative region-of-interest (ROI). In order to fi nd such ROI, a 
low threshold must be employed which may compromise the 
results by introducing false-positives ROI (Fig.  1a, b , threshold 2). 
To detect biological relevant ROI, probe-intensity signals should 
be discriminated from nonspecifi c signals. A challenge in the analysis 
of tiling-array data is the detection of true ROI, and to minimize 
the number of false positives. A straightforward approach is to 
choose a fi xed number of consecutive probes above a certain thresh-
old and indicate it as an ROI. Nevertheless, this defi nition of ROI 
may be inadequate because of the required number of consecutive 
probes and the optimal threshold may be diffi cult to establish. 
In addition, the probe resolution varies across the genome, and 
across different tiling-array platforms.

   Multiple methods have been developed to analyze tiling-array 
data which all serve one goal, i.e., the detection of true ROI and 
thereby discriminating positive-probe intensity from the back-
ground. The developed methods differ in their statistical 
approaches: methods incorporate the hypergeometric distribution 
[ 5 ], hidden Markov models [ 6 – 8 ], correlation structures [ 9 ], heu-
ristics [ 10 ], mixture models [ 11 ], Bayesian modeling [ 12 ,  13 ], 
wavelets [ 14 ], or by using other methodologies [ 15 – 22 ]. All meth-
ods have shown to be useful in fi ltering large data sets for candidate 
gene discovery. It is of importance to note that biological experi-
ments are always a necessity to validate particular fi ndings. 

 Here we discuss the previously developed method, Hyper-
geometric Analysis of Tiling arrays (HAT) [ 5 ], that uses the 
 hypergeometric distribution to assess the probability of a con-
secutive number of probes in a particular genomic region while 
 controlling multiple testing (Family Wise Error: FWER). 
Furthermore, HAT uses multiple threshold cutoffs, it does not nec-
essarily require experimental replicates, and can be normalized 
against reference fi les. It furthermore employs a single user defi ned 
parameter: the signifi cance level alpha. Note that alpha is not used to 
determine the threshold cutoff using the data distribution (Fig.  1b ), 
instead it computes the probability to observe a specifi c number of 
probes for a particular genomic region (window) over multiple 
threshold cutoffs. Furthermore, specifying parameters such as 
fragment-size may improve the detection of ROI, whereas param-
eters for gene- mapping and sequence-of-interest are required for 
additional  analysis (Fig.  2 ). HAT is generically built and therefore 
independent of probe-intensity distribution, probe-sets coverage 
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and probe-sets resolution across the genome and tiling-array 
platform. It is successfully applied in multiple types of biological 
research questions, i.e., the detection of protein–DNA interactions 
(ChIP-on-chip [ 5 ]), identifi cation of genomic locations that are 
involved in viral integration and potentially harbor tumor suppressor 
genes (MeDIP-on-chip) [ 2 ], the identifi cation of regions enriched 
for histone modifi cations such as trimethylation of histone 3 at lysine 
4 or lysine 27 (H3K4 me3, H3K27 me3) [ 5 ], and for the identifi ca-
tion of anthocyanin-specifi c genes that fl ank enriched genomic DNA 
in black rice using 3′-TILLING 135 K  Oryza sativa  microarray 
[ 23 ]. Many detected ROI among these different studies were con-
fi rmed by quantitative polymerase chain reaction (qPCR).

   Although tiling arrays have been applied successfully for 
genome-wide applications, high-throughput sequencing of for 
instance chromatin immunoprecipitated DNA-fragments (ChIP- 
Seq) show genome-wide associations in higher resolutions and will 
therefore be superior to chip technology. Even though ChIP-Seq 
is becoming the standard for genome-wide applications, numerous 
high-quality tiling-array data sets are publicly available at the gene 
expression omnibus website (GEO:   http://www.ncbi.nlm.nih.
gov/geo/    ). These can be of value to address particular research 
questions raised by investigators and to which HAT may be very 
useful. Furthermore, although HAT was initially developed for the 
analysis of tiling-array data, the application is not limited to the 
studies discussed in this chapter, but can be applied for the analysis 
of ChIP-Seq data as well. 

 Here we stepwise discuss how to apply HAT to analyze 
 tiling- array data. As case examples we used two publicly available 
ChIP-on- chip data sets. In addition we discuss two types of analyses 
that frequently follow upon the detection of ROI, namely motif 
and pathway analyses.  
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  Fig. 2    Schematic overview of tilling-array data analysis. Stepwise illustration of normalized tiling-array data 
towards the detection of signifi cantly enriched ROI, the fl anking genes, sequences fi les (FASTA), motif analysis, 
pathway analysis, and the UCSC-browser       
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2     Materials 

 We previously reported the successful usage of HAT on two novel 
data sets [ 5 ]. Here we demonstrate HAT on previously reported 
STAT4-chromatin immunoprecipitation (ChIP-on-chip) experi-
ments ( n  = 2), compared to controls ( n  = 2). Secondly, we use HAT 
to analyze the DNA-binding capacity of a C-terminal mutant 
 CEBPA  ( n  = 2), compared to controls (ER) ( n  = 2). Both data sets 
are available on the gene expression omnibus (GEO), GSE19321 
and GSE16845, respectively. Data were generated using the 
Affymetrix GeneChip Mouse Promoter 1.0 Array. This chip gener-
ates 4.6 million perfect match probes over 28,000 mouse promoter 
regions. Promoter regions cover 6 kb upstream to 2.5 kb down-
stream of 5′ transcription start sites. Each probe has a size of 25 
nucleotides (nt). RAW probe-intensity values are normalized by 
utilizing Model-based analysis of tiling arrays for ChIP-chip (MAT) 
[ 22 ,  24 ].  

3       Analyzing Tiling-Array Data Sets 

 In this paragraph we demonstrate the usage of HAT for the 
identifi cation of signifi cant ROI and defi ne the parameters for 
ChIP-on- chip experiments. Before starting the peak-detection 
algorithm (HAT), pre-knowledge about the experimental setup is 
highly recommended. The experimental protocol requires shear-
ing of the DNA by using a sonication process which results in 
DNA-fragments of approximately 600 base pairs (bp). Subsequently, 
chromatin fragments are  immunoprecipitated  using antibodies 
directed to the protein of interest, known to interact with DNA. 
The consecutive probes can, therefore, cover up to 600 bp after 
the hybridization process per fragment. This information can be 
used in the model for the detection of ROI. Note that signifi cant 
ROI can be detected that are larger or smaller in width than 
600 bp. In addition, we set the signifi cance level on 0.05. 

 The fi rst ChIP-on-chip data set to which we applied HAT is a 
study that was previously reported and in which STAT4-mediated 
transcriptional regulatory networks in Th1 cell development were 
investigated [ 1 ]. STAT4 is a critical component in the develop-
ment of infl ammatory adaptive immune responses. Although 
STAT4 was subject in various other studies [ 25 ,  26 ], it was claimed 
that the genetic program, activated by STAT4 that results in an 
infl ammatory cell type, is not well characterized. A ChIP-on-chip 
experiment was therefore conducted as previously reported [ 1 ]. 
Here, we analyzed both experimental replicates by choosing a 
fragment- size of 600 nt and α: 0.05, and detected  n  = 2,903 and 
 n  = 3,106 ROI. Moreover, 84 % ( n  = 2,499) overlapped in both 
replicates compared to the controls (sized between 215 and 
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4543 nt, median: 1002 nt). It was previously demonstrated that 
the analysis method, GenPathway, identifi ed 4,669 genes that were 
seen in both replicates [ 1 ]. This list is subsequently fi ltered for 
genes with binding intensity >4 and thereby resulted in 1,540 
genes. This indicates that using the unfi ltered list, GenPathway 
detects almost twice the number of ROI when compared to HAT. 
To investigate the validity of the ROI that were detected by HAT, 
a motif enrichment analysis was conducted on the 2,499 common 
ROI by using F-MATCH [ 27 ,  28 ]. We hypothesize that the 
detected ROI should contain a STAT-binding site. We detected a 
total of 38 transcription factor binding sites (TFBS) of which the 
STAT-motifs were highly enriched ( P  < 0.001). Moreover, 7 STAT- 
motifs were detected in the top 10 after ranking the TFBS on 
signifi cance (Table  1 ). This suggests high specifi city of the detected 
ROI. Note that the STAT-motif is also highly enriched in the genes 
detected by GenPathway [ 1 ]. Although both methods detected 
high enrichment for the STAT-motifs, the overlap of genes between 
both methods was 897 genes. In other words, 1,211 genes were 

   Table 1  
     Motif enrichment analysis on the detected regions-of-interest in the STAT4 experiment   

 Transcription factor  Recognized factors  Fold- increase    P -value 

 V$STAT1_01  STAT1, STAT1alpha,STAT1beta  8,0588  5,5308E−29 

 V$STAT5B_01  STAT5A, STAT5B  4,0922  1,052E−26 

 V$STAT1_05  STAT1  5,6114  2,1506E−26 

 V$STAT_01  STAT1, STAT1alpha, STAT1beta,STAT2, 
STAT3, STAT3-isoform1,STAT4, STAT5A, 
STAT5B, STAT6 

 3,5424  5,4465E−22 

 V$STAT3_01  STAT3, STAT3-isoform1  5,9629  1,3443E−19 

 V$STAT1STAT1_Q3  CBF3, STAT1:STAT1, ehf  4,0458  1,1127E−18 

 V$IRF_Q6  IRF-10, IRF-2, IRF-3, IRF-4, IRF-5, IRF-6, 
IRF-7, IRF-7A, IRF-7B, IRF-7H, IRF-8, 
IRF4-1, irf1 

 3,603  1,0817E−11 

 V$AP1 _Q6_01  AP-1, FOSB, FosB, Fra-1, Fra-2, JunB, 
JunB:Fra-1, JunB:Fra-2, JunD, JunD:Fra-2, 
JunD:deltaFosB, c-Fos, c-Jun, c-Jun:FosB, 
c-Jun:JunD, c-Jun:c-Fos, deltaFosB 

 2,7031  2,0413E−11 

 V$STAT5A_01  STAT5A  4,0795  3,8123E−11 

 V$BACH1_01  Bach1, Bach1t  3,1209  3,3523E−09 

  The top ten enriched TFBS among the detected binding regions using HAT for the STAT4 study (ChIP-on-
chip). A TFBS is called when the position weight matrices (PWM) is enriched at  P  ≤ 0.001. Recognized factors: 
the transcription factors that are recognized by the TFBS. Fold-increase: the frequency that a TFBS is detected 
among the binding regions compared to the reference set (5,000 randomly chosen genes)  
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solely detected by HAT and not by GenPathway. To assess the 
validity of these ROI, we conducted a motif analysis for only those 
1,211 ROI and detected again high enrichment for the STAT- 
motifs, i.e., 6 STAT-TFBS are detected in the top ten ranked list 
(Table  2 ). We hypothesize that these 1,211 genes may be present 
in the initial 4,669 genes detected by GenPathway, but are excluded 
from the list as these did not comply the above mentioned criteria. 
This is supported by the notion that signifi cantly lower probe- 
intensity levels are observed ( P  < 0.0001) in the 1,211 ROI com-
pared to the 897 ROI. Note that the probe-intensity levels, of all 
the detected ROI, are signifi cantly higher compared to the back-
ground. Unfortunately, we were not able to analyze the motifs 
among the exclusively detected genes by GenPathway, as the exact 
genomic positions of the ROI were not specifi ed. These differ-
ences may occur due to alternatively defi ned gene-mapping proce-
dures (Fig.  3 ) and the differences in statistical methodologies. 
In conclusion, we identifi ed another set of genes that were highly 
enriched for the STAT-motif.

     The second ChIP-on-chip data set is used to study the DNA- 
binding capacity of a variant of CCAAT enhancer binding protein 

   Table 2  
  Motif enrichment analysis on the detected regions-of-interest that are exclusively detected using 
HAT in the STAT4 experiment   

 Transcription factor  Recognized factors  Fold- increase    P -value 

 V$STAT1_01  STAT1, STAT1alpha, STAT1beta, STAT2, STAT3, 
STAT3-isoform1, STAT4, STAT5A, STAT5B, 
STAT6 

 7,235  4,96E−16 

 V$STAT3_01  STAT3, STAT3-isoform1  5,862  7,36E−12 

 V$STAT5B_01  STAT5A, STAT5B  3,6333  2,16E−11 

 V$STAT1_05  STAT1  4,6577  2,45E−09 

 V$STAT_01  STAT1, STAT1alpha, STAT1beta  3,4047  4,05E−09 

 V$GADP_01  GABP  4,4162  1,88E−08 

 V$SAP1A_01  SAP-1a  4,1057  5,32E−08 

 V$STAT1STAT1_Q3  CBF3, STAT1:STAT1, ehf  3,5072  5,26E−07 

 V$ELK1_02  Elk-1, Elk1-isoform1  4,0252  7,68E−07 

 V$CETS1P54_01  Ets-1, Ets-1 deltaVII, c-Ets-1, c-Ets-1 54, c-Ets-1A, 
c-Ets-1B 

 3,9813  8,78E−07 

  The top ten enriched TFBS among the exclusively detected binding regions of HAT for the STAT4 study (ChIP-on-
chip). A TFBS is called when the position weight matrices (PWM) is enriched at  P  ≤ 0.001. Recognized factors: the 
transcription factors that are recognized by the TFBS. Fold-increase: the frequency that a TFBS is detected 
among the binding regions compared to the reference set (5,000 randomly chosen genes)  
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alpha ( CEBPA ) that carries a C-terminal mutation.  CEBPA  is a 
transcription factor and master regulator of myeloid differentiation 
[ 29 ,  30 ]. It is frequently mutated in patients with acute myeloid 
leukemia (AML) (5–14 %) [ 31 ]. Abnormalities in  CEBPA  may 
contribute to a block in differentiation of progenitor cells of gran-
ulocytes, which can result in leukemogenesis. Mutations in  CEBPA  
are associated with a particular prognosis of patients with AML 
[ 31 ]. In AML patients, two types of  CEBPA  mutations are known 
to exist: mutations in the N-terminus and the C-terminus. 
C-terminal mutations are found in the DNA-binding domain. 
Since the mutant protein can still interact with other proteins that 
may interact with DNA, we propose that mutant  CEBPA  may indi-
rectly interact with DNA. We wondered to which loci mutant 
 CEBPA  might interact in an indirect manner. We created a similar 
C-terminal mutation as found in one particular human AML 
patient [ 32 ], with an insertion of six amino acids in the C-terminal 
bZIP domain. We used it in the ChIP-on-chip experiment to iden-
tify genes that may play a role in leukemogenesis. Promoter array 
hybridizations were conducted from a myeloid cell line model 
(32D) that expresses either beta-estradiol inducible C-terminal 
mutant  CEBPA  (2 clones) or control-ER (2 clones). The question 
that we wished to address is whether mutated  CEBPA  can bind to 
the DNA, thereby identifying the associated genes. Using a fragment- 
size of 600 bp and an alpha of 0.05, we detected in total  n  = 89 and 
 n  = 109 signifi cant binding regions in the two clones with C-terminal 
mutant  CEBPA  that was not seen in the controls (Fig.  4 ). The ROI 
are sized between 154 and 2,481 nucleotides (median 717 nt) and 
forty-eight were commonly detected in both clones.

   We next searched for binding-motifs among the detected ROI 
of the C-terminal mutant  CEBPA . Although it is known that the 
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  Fig. 3    Mapping of detected regions-of-interest to genes located in close vicinity. A single ROI is illustrated with 
four neighboring genes: two on the positive strand (upstream and downstream) and two on the negative strand 
(upstream and downstream). Mapping of ROI to genes is crucial for additional analysis (e.g., pathway analysis). 
ROI: region-of-interest, TSS: transcriptional start site, 3′: three prime UTR, 5′: fi ve prime UTR       
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C-terminal mutant  CEBPA  lacks binding capacity, we identifi ed 
three enriched motifs namely, core-binding factor (CBF), ETS, 
and ESE-1 ( P -value < 0.001). Core-binding factors have been 
shown to fulfi l an important role in hematopoiesis [ 33 ] and ETS 
family members, such as ESE-1, fulfi l an important role in several 

  Fig. 4    Graphical representation of the genes that are bound by the C-terminal mutant  CEBPA . One hundred and 
forty mapped genes from the detected ROI of the C-terminal mutant  CEBPA  experiments are illustrated. 
Candidate genes in experiment 1 are indicated by the  red box , whereas the candidate genes from experiment 
2 are indicated by the  blue box . Forty-six genes (mapped from 48 ROI) that overlap between experiment 1 and 
2 are indicated with a  red text-color .  Line-colors  are colored similar as the chromosomes which are numbered 
from 1 to 19 and X, and show the relative location of the genes using mouse genome-build 8 (mm8)       
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signal transduction pathways [ 34 – 36 ]. As expected, we did not 
fi nd the consensus binding motif CEBP as we showed previously 
for wild-type  CEBPA  using the same model system [ 5 ]. The detec-
tion of these three enriched motifs and the absence of the CEBP 
motif suggest that DNA-binding by mutant CEBPA had occurred 
indirectly. We hypothesized that other factors may infl uence the 
DNA-binding capacity and therefore analyzed the 2 kb upstream 
regions, from the transcriptional start site (TSS) of the detected 
genes (Fig.  4 ). This resulted in the detection of 71 enriched TFBS 
with  P  ≤ 0.001 and 1.5 times more frequently observed than in the 
reference set (fold-increase ≥ 1.5). As a reference set we selected 
2 kb upstream sequences (starting from the transcription start site) 
of 5,000 randomly selected genes. The 2 kb upstream sequences 
are gathered using the UCSC database (  http://hgdownload.cse.
ucsc.edu    ). The top 15 TFBS are depicted in Table  3 .

   Table 3  
  Motif enrichment analysis on the 2 kb upstream regions-of-interest of the C-terminal mutant  CEBPA  genes   

 Transcription factor  Recognized factors  Fold- increase    P -value 

 V$POU3F2_02  POU3F2, POU3F2 (N-Oct-5a), POU3F2 
(N-Oct-5b) 

 1,9479  6,8068E−12 

 V$CDP_02  CDP, CDP-isoform1, CDP2  2,0723  9,8643E−09 

 V$FOXP3_Q4  FOXP3  4,753  5,9801E−08 

 V$OCT1_01  Oct-1, POU2F1, POU2F1a  1,7131  6,2367E−08 

 V$IPF1_Q6  PDX1, ipf1  1,6051  1,3651E−07 

 V$CLOX_01  Cutl  1,7556  8,1928E−07 

 V$SATB1_01  CBF-C  1,5865  8,4804E−07 

 V$OTX_Q1  Otx1, Otx2  1,9029  9,0873E−07 

 V$HMGIY_Q3  HMGI-C, HMGIY, HMGIY-isoform1, 
HMGIY-isoform2 

 1,546  1,7164E−06 

 V$FOXO1_01  FOXO1A  1,7142  1,9312E−06 

 V$DMRT4_01  DMRT4  1,581  2,2881E−06 

 V$NFAT_Q6  NF-AT, NF-AT1, NF-AT1C, NF-AT2, 
NF-AT3, NF-AT4, NFAT1, NFAT1-is&$$$; 

 3,009  2,7411E−06 

 V$TEF_Q6  TEF-xbb1, Thyrotroph embryonic factor, 
Thyrotroph embryonic factor&$$$; 

 1,9549  5,1394E−06 

 V$SRF_C  SRF, SRF-I, SRF-L, SRF-M, SRF-S  2,1108  5,9055E−06 

 V$CEBPGAMMA_Q6  C/EBPgamma  1,8284  6,5027E−06 

  The top 15 enriched TFBS among the 2 kb upstream genes of the C-terminal mutant ROI. A TFBS is called 
when the position weight matrices (PWM) is enriched at  P  ≤ 0.001 and with fold-increase >1.5. Recognized fac-
tors: the transcription factors that are recognized by the TFBS. Fold-increase: the frequency that a TFBS is 
detected among the binding regions compared to the reference set (5,000 randomly chosen genes)  
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    Although the goal is to detect ROI by using ChIP-on-chip tiling 
arrays, it often requires additional analysis, such as pathway analy-
sis, to test a particular hypothesis. This requires the mapping of 
ROI to genes. Each ROI can, theoretically, be mapped to four 
genes that are located on: (1) the positive strand and upstream, 
(2) the positive strand and downstream, (3) the negative strand 
and upstream, and (4) the negative strand and downstream 
(Fig.  3 ). From these four genes, only one gene may be targeted 
(or two genes in a bi-directional promoter region). For promoter 
tiling arrays, where only the promoter regions are present on chip, 
it is straightforward to map the detected ROI to the nearest located 
TSS of a gene. To prevent incorrect gene-mapping, due to differ-
ences in genomic locations of TSS between species and/or 
genomic-build (hg18, hg19 for human and mm8, mm9 for mus 
musculus), it is highly recommended to use the same species and 
genomic-build for both the gene-mapping fi le as the one used in 
the normalization process. These gene-mapping fi les can be down-
loaded from the UCSC:   http://hgdownload.cse.ucsc.edu    . 

 Manually curating each detected ROI to a particular gene is 
possible using the UCSC-genome-browser track (generated using 
HAT, Fig.  2 ) but can be time-consuming. Alternatively, by specify-
ing the species and genome-build in HAT, each ROI can automati-
cally be mapped to the TSS of a gene in closest vicinity. We specifi ed 
in both ChIP-on-chip experiments “mm8” because the experi-
mental samples were derived from mus musculus and normalized 
with genomic-build 8. Because both analyzed data sets have been 
generated using promoter tiling arrays, it allowed the mapping of 
the ROI to genes in close vicinity. For the STAT study, the 2,499 
detected ROI were mapped to 2,108 unique genes. For the  CEBPA  
study, it resulted in the detection of 140 unique genes. These are 
graphically illustrated using a circos-plot [ 37 ] (Fig.  4 ). Such graphi-
cal representation indicates the chromosomal location of the genes, 
and whether genes are commonly detected in the independent 
experiments using different clones.  

  Analysis on the detected ROI or the genes that are located in close 
vicinity of the ROI is an important next step for hypothesis testing. 
Both motif and pathway analyses are therefore useful in tiling-array 
studies (Fig.  2 ). 

 Motif analysis detects specifi c sequences involved directly in 
protein–DNA binding interactions, or alternatively whether the 
promoter regions of the fl anking genes include overrepresented 
sequences of transcription factors. These so-called TFBS may sug-
gest that the protein-of-interest interacts synergistically with other 
proteins or is involved in the formation of protein complexes. 
In general, two types of motif analysis exist: by using known TFBS 
that are derived from published collections (e.g., JASPAR or 
TRANSFAC databases). These databases should be used when 
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seeking specifi c factors or structural classes. Secondly, dé-novo 
motif analysis can be used to analyze similarities among the sequences 
to produce a description for each pattern it discovers. F-MATCH 
[ 27 ,  28 ] and MEME [ 38 ] are two algorithms which can be used for 
the detection of known TFBS and/or dé-novo motifs. These meth-
ods are online accessible and require FASTA- fi les as an input, which 
contain sequences of the ROI (generated by HAT). 

 Besides motif analysis, it can be useful to analyze the detected 
genes for enriched pathways. Pathway analysis is the process of iden-
tifying interactions and associated annotations [ 39 ]. For the detected 
fl anking genes it may provide insight how genes are regulated 
and which processes, functions, or networks were involved. Both 
commercial and noncommercial entities provide pathway analysis. 
A commercial tool is Ingenuity Pathway Analysis (Ingenuity ®  
Systems,   http://www.ingenuity.com    , IPA 8.8). Networks in IPA are 
created using literature-based records that are maintained in the 
Ingenuity Pathway Knowledge Base. It computes a network-score 
for the overlap of the focus genes with a global molecular network. 
Alternatively, Gene Set Enrichment Analysis (GSEA) [ 40 ] provides 
both software and a collection of annotated gene sets (MSigDB: 
Molecular Signature Database) that can be used for the detection of 
pathways and/or gene sets (noncommercial). Depending on the 
research question, different gene sets can be used: (1) BioCarta path-
ways, describing the molecular relationships derived from active 
research areas, (2) KEGG pathways, describing the molecular 
interactions and reaction networks, (3) Reactome pathways, man-
ually curated and peer-reviewed pathways, (4) GO biological 
processes, gene sets describing the biological process ontology, (5) 
Transcription factor targets (TFT), gene sets contain genes that 
share a TFBS, and (6) MicroRNA targets, Gene sets that contain 
genes that share a 3′ UTR microRNA binding motif.   

4    Notes 

     All previously described methods have been reported to validate 
some of the detected ROI as described in Subheading  1 . 
Nevertheless, different statistical methodologies lead to differences 
in the detected ROI. We hypothesize that various methodologies 
may results in similar detected ROI which are most likely the 
genomic regions that contain a contiguous number of probes with 
high probe-intensity levels (the results of two methods are shown 
in Subheading  3 ). In addition, the differences between detected 
ROI among various methodologies are likely the genomic regions 
with subtle changes in probe-intensity levels. Note that some 
developed methodologies are designed for the analysis of one type 
of tiling-array application. Others may require various parameters 
to set before starting the analysis, e.g., by defi ning the ROI using 
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the maximum and/or minimum number of probes in a genomic 
region, maximum gap size between two probes and threshold. 
Changing one of the parameters will affect the fi nal results. It is 
therefore always recommended to perform additional analysis after 
the detection of ROI to ensure confi dence about the gained results. 
We demonstrated this in Subheading  3 , where we detected 1,211 
ROI that were exclusively found for HAT. A motif analysis showed 
signifi cant enrichment for the STAT-consensus binding site. Such 
fi ndings may help deciding which method to use. It is important to 
note that in the end laboratory experiments are indispensable to 
demonstrate the biological signifi cance of particular that ROI, 
identifi ed by means of tiling-array analysis.  

  The analysis of tiling-array data (Subheading  3 ) can result in the 
absence of signifi cantly enriched ROI. This indicates that probe- 
intensity values, by the hybridization of DNA-fragments on chip, 
showed no signifi cant differences compared to the background 
data-fi le. In case the hybridization process on chip is successfully 
performed (i.e., DNA-fragments are immunoprecipitated) and the 
background data-fi le is correctly provided into the model, it still 
may result in the absence of signifi cantly enriched ROI. Note that 
analyzing experimental data-fi les without the usage or incorrect 
usage of a background data-fi le can lead to the absence of signifi -
cantly enriched ROI or the detection of false-positive ROI. If no 
signifi cantly enriched ROI are detected, it should be considered that 
no DNA-binding did take place and therefore no ROI were detected. 
Alternatively, one could decide to increase the signifi cance level 
alpha and rerun the analysis. Note that the false-positive rate increases 
by using alpha >0.05. It is therefore highly recommended to validate 
the ROI by qPCR. As an example, it is  demonstrated that a 
MeDIP-on-chip experiment resulted in the detection of 15 ROI 
[ 2 ]. These are detected without using a background [ 2 ]. Although 
there was supporting evidence that all 15 ROI may be valid 
(additional analysis showed that all ROI contained a nearby restric-
tion site), only eight viral integration sites could be validated by 
directed PCR followed by Sanger sequencing [ 2 ]. The remaining 
seven ROI may therefore be the result of technical variation which 
may have been prevented by using a background fi le.  

  The usage of tiling-array data does not provide information 
regarding the strand (positive or negative) or genes affected by the 
putative promoter. It only indicates the probe-intensity values and 
their genomic positions. If a particular genomic region is marked 
as a potential ROI, the responsible immunoprecipitated DNA- 
fragment is suggested to show binding, e.g., via an immunopre-
cipitated transcription factor, that could bind to the DNA strand. 
The ROI is then linked to the gene in close vicinity (Fig.  3 ). The use 
of an UCSC-browser track may help manually curating the ROI to 
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a gene. Alternatively, it requires biological experiments to validate 
whether the binding had an effect on the regulation of a gene. 
Note that promoter tiling arrays (as described in Subheading  2 ) 
only contain probes of which the genomic locations are in the pro-
moter regions of genes and therefore simplifi es the gene-mapping 
procedure.  

  HAT is build generically to analyze different applications and plat-
forms of tiling-array data (as described in Subheading  1 ). On the 
contrary, normalization may differ between different applications and 
platforms of tiling arrays, e.g., one-color arrays of Affymetrix versus 
two-color arrays of Nimblegen. Including a normalization step into 
the model would therefore limit the model to one type of tiling 
array. RAW cell fi les need to be normalized based on the type of 
tiling array [ 24 ], and then used as an input into the model (Fig.  2 ).  

  When using HAT, it is recommended to use at least 4GB of RAM 
memory and Windows-64bits version or UNIX-based system. 
The methodology is tested on tiling-array data containing 4.6 
million perfect match probes, and developed in such a way that it is 
analyzed per chromosome which reduces high memory loads. 
Nevertheless, when memory problems occur, it is recommended to 
kill unused running processes when running HAT. In a Windows 
environment this can be done in the “task manager”; fi nd the “Run” 
window in the start-menu en type “taskmgr” and then press “Ok” 
or press the < ENTER > -key.  

  The installation of HAT requires an x86-64 Windows or UNIX- 
based system and 4GB memory or more is highly recommended. 
Both platforms require the installation of MATLAB or the 
MATLAB Compiler Runtime (MCR) which is a standalone set of 
shared libraries that enable full functioning of HAT. The MCR 
installer and HAT can be downloaded from   http://www. 
erasmusmc.nl/hematologie/    . 

      1.    Download HAT and the MCRinstaller setup-fi le.   
   2.    Run the setup-fi le and check the option: “MCR-package for 

win64.”   
   3.    After the installation, the MCR directory (<mcr_root > \ < ver-

sion>) will automatically be included in the PATH. Alternatively 
the environment variable can be set using the command- 
prompt ( 3.1 ) or without the command-prompt ( 3.2 ).
   3.1.    Open a command-prompt and issue the command:

   set PATH = <mcr_root > \ < version > \runtime\win64;%PATH%      
  3.2.    For Windows, add the PATH environment variable as 

follows.    
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 ●    Select the My Computer icon on your desktop or in the 
confi guration window.  

 ●   Right click the icon and select Properties from the menu.  
 ●   Select the Advanced tab.  
 ●   Click Environment Variables.  
 ●   Click “Edit” for variable “PATH”  
 ●   Add the " < mcr_root > \ < version > \runtime\win64" to the 

“PATH” (delimited by semicolons ( ; ) ).  
 ●   Run HAT by executing “HAT.exe”.         

      1.    Download the HAT and MCRinstaller fi le.   
   2.    Install the MATLAB Compiler Runtime with the following 

command.
      ./MCRInstaller.bin -is:extract 
 ./MCRInstaller.bin -console 
 For a noninteractive and non-GUI installation. 
 ./MCRInstaller.bin –P bean421.installLocatio

n=”desiredInstallPath” –silent      
   3.    After the installation, add the MCR directory (<mcr_

root>/<version>) to the environment variable.
   setenv LD_LIBRARY_PATH 
 <mcr_root>/<version>/runtime/glnxa64: 

 <mcr_root>/<version>/bin/glnxa64: 

 <mcr_root>/<version>/sys/os/glnxa64: 

 <mcr_root>/<version>/sys/java/jre/glnxa64/
jre/lib/amd64/native_threads: 

 <mcr_root>/<version>/sys/java/jre/glnxa64/
jre/lib/amd64/server: 

 <mcr_root>/<version>/sys/java/jre/glnxa64/
jre/lib/amd64: 

 setenv XAPPLRESDIR < mcr_root>/<version>/X11/
app-defaults      

   4.    Run HAT by issuing the command: "./HAT".           
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