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Abstract: Probing protein-deoxyribonucleic acid (DNA) is gaining popularity as it sheds light 

on molecular mechanisms that regulate the expression of genes. Currently, tiling-arrays and 

next-generation sequencing technology can be used to measure these interactions. Both methods 

generate a signal over the genome in which contiguous regions of peaks on the genome represent 

the presence of an interacting molecule. Many methods do exist to identify functional regions 

of interest (ROIs) on the genome. However the detection of ROIs are often not an end-point in 

research questions and it therefore requires data dragging between tools to relate the ROIs to 

information present in databases, such as gene-ontology, pathway information, or enrichment 

of certain genomic content. We introduce hypergeometric analysis of tiling-array and sequence 

data (HATSEQ), a powerful tool that accurately identifies functional ROIs on the genome where 

a genomic signal significantly deviates from the general genome-wide behavior. HATSEQ also 

includes a number of built-in post-analyses with which biological meaning can be attached to 

the detected ROIs in terms of gene pathways and de-novo motif analysis, and provides differ-

ent visualizations and statistical summaries for the detected ROIs. In addition, HATSEQ has 

an intuitive graphic user interface that lowers the barrier for researchers to analyze their data 

without the need of scripting languages. We compared the results of HATSEQ against two other 

popular chromatin immunoprecipitation sequencing (ChIP-Seq) methods and observed overlap 

in the detected ROIs but HATSEQ is more specific in delineating the peak boundaries. We also 

discuss the versatility of HATSEQ by using a Signal Transducer and Activator of Transcrip-

tion 1 (STAT1) ChIP-Seq data-set, and show that the detected ROIs are highly specific for the 

expected STAT1 binding motif. HATSEQ is freely available at: http://hema13.erasmusmc.nl/

index.php/HATSEQ.

Keywords: bioinformatics, NGS analysis, ChIP-Seq, peak detection

Background
Protein-deoxyribonucleic acid (DNA) interactions, such as transcription factor-DNA bind-

ing, DNA methylation, or methylation/acetylation of histone tails, can nowadays be identified 

with high sensitivity and specificity, using next-generation sequencing (NGS) technology. 

NGS rapidly replaces tiling-arrays technology because of the increased resolution with which 

the interactions can be measured. Both technologies generate a signal along the genome that, 

for instance, represents the interaction of regions with transcription factors. Typically one is 

interested in finding those regions in the genome where a signal significantly deviates from 

the overall genome-wide background signals. Previously, for tiling-array data, we developed 

a method called hypergeometric analysis of tiling-arrays (HAT), to detect regions of interest 

(ROIs). In short, HAT sets a threshold to decide whether the signal of a probe is excessive, 

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/AABC.S51271
mailto:e.taskesen@tudelft.nl
http://hema13.erasmusmc.nl/index.php/HATSEQ
http://hema13.erasmusmc.nl/index.php/HATSEQ


Advances and Applications in Bioinformatics and Chemistry 2013:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

56

Taskesen et al

and then uses a sliding window approach to analyze whether a 

significant number of marked probes are found within that win-

dow. The signal is analyzed at different scales by considering a 

range of different thresholds and window sizes, and the detected 

regions at individual scales are integrated. The detected ROIs 

are over all scales under control of a Family-Wise-Error (FWE), 

specified by a significance level α. HAT has been successfully 

applied on a range of different DNA-interaction sources, such 

as chromatin immunoprecipitation (ChIP)-on-chip,1 MeDIP 

(methylated DNA immunoprecipitation)-on-chip,2 H3K4me3 

(trimethylation of H3 lysine 4), H3K27me3 (trimethylation of H3 

lysine 27),1 and 3′-TILLING-135-K-Oryza-sativa-microarray.3 

Here, we introduce HATSEQ, which is an improved version 

of HAT that can work on nucleotide resolution. As with HAT, 

hypergeometric analysis of tiling-array and sequence data 

(HATSEQ) is nonparametric, and independent of the coverage 

and resolution across the genome. Various methods with vary-

ing algorithmic complexity have been developed to detect ROIs 

in ChIP sequencing (-Seq) data such as Model-based Analysis 

for ChIP-Seq (MACS),4 FindPeaks,5 CisGenome,6 QuEST 

(Quantitative Enrichment of Sequence Tags),7 and PeakSeq.8 

MACS is one of the most cited methods for analyzing ChIP-Seq 

data. Although there are a variety of ChIP-Seq methods, the 

majority can only be run from the command line and require 

variable degrees of data formatting and expertise to implement.9 

CisGenome, however, does provide a graphical user interface 

(GUI) but is restricted to the windows platform. With HATSEQ, 

we aim to target the typical researcher who can experience dif-

ficulties with the use of the command-line and in downstream 

analyses. After finding the ROIs with HATSEQ, one is generally 

interested in functional analysis of the regions. Typically this is 

done by relating the regions to information present in databases, 

such as gene-ontology, pathway information, or enrichment of 

certain genomic content. HATSEQ supports, through a GUI, 

a number of such functional analyses of the ROIs: eg, gene-

mapping, motif analysis, and pathway analysis. It also outputs for 

the detected ROIs, FASTA files, University of California, Santa 

Cruz (UCSC) genome browser-tracks to enable visualization 

of the ROIs together with any other genomic data, and a single 

circular graph (Circos)10 that illustrates all the detected genes 

and their chromosomal locations.

Implementation
hATseQ: a statistical framework  
to detect regions of interest  
in genomic signals
HATSEQ detects ROIs in NGS data using the statistical 

framework as described in HAT,1 but with read-depth at 

genomic positions as an input. It is supposed that genomic 

positions with read-depth greater than zero may be the result 

of sequenced DNA pieces that were, for example, present 

in the immunoprecipitated chromatin sample, indicating the 

presence of protein-DNA binding at that particular position. 

To decide whether the read-depth at a genomic location is 

excessive, HATSEQ varies the threshold at which it con-

siders the read-depth to be indicative for a genomic event. 

A sliding window approach is then used to analyze whether 

a significant number of excessive sequence-reads are found 

within the window for every threshold setting and for varying 

widths of the window (as the size of the event is not known a 

priori). For each window, a P-value is determined, defined as 

the probability of observing at least the number of observed 

reads, x, in the window (given a random distribution of reads 

over the genome). For any window position g, threshold 

level t, and window width n, P(g, t, n) is computed as:

 P g t n P X x g t n X c
P X x g t n

P X c g t n
( , , ) ( | , , , )

( | , , )

( | , , )
= ≥ ≥ =

≥
≥
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where P(X $ x|g, t, n) is based on the hypergeometric distri-

bution of drawing, on genomic position g, at least x reads that 

exceed the threshold t in a window of size n, and where N is 

a fixed parameter that represents the total number of reads 

that are sequenced, and K the number of reads that exceed 

the threshold. For each window, the P-value is restricted 

such that each window should contain at least c reads to pre-

vent evaluating window positions that are not of interest.

We apply Bonferroni to correct for the number of tests 

performed at each threshold level, which is defined by the 

number of reads (K) that exceed the threshold (t) and window 

size n. The corrected P-values are subsequently defined by: 

P*(g, t, n). Due to the use of various threshold values (t) and 

window sizes (n), similar or partly overlapping regions are 

found. In order to find a single region-of-interest at the same 

genomic location, these overlapping regions are integrated 

by joining regions with one or more overlapping reads. To 

determine the most important part of the ROI, we introduce 

a read-depth significance score Q(g), which reports how 

often reads were part of a region for a predefined significance 

level (α). This score is computed as follows:

 Q g S g t n I x g t n t
Nt

( ) ( , , ) ( ( , , ), )= ⋅
∀∀ ∑∑

 
[2]

where
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and

 I x g t n x g t( ( , , )) ( )= ≥{0
1

else
if

 [4]

Thus, the f inal candidate ROIs are determined by 

integrating the signif icant window positions over all 

thresholds. HATSEQ is optimized for NGS data analysis by: 

1) incorporating a minimum allowed read-depth to prevent 

the detection of systematic variation; 2) incorporating a mini-

mum allowed region length to prevent the detection of regions 

that are the result of highly correlated reads; 3) normalization 

of the read-depth per sample such that sum of the read-depth 

is 1, which makes the depth of the sequenced reads compa-

rable between experiments; 4) normalization of the read-

depth by using a set of reference samples; and 5) the use of 

multi-threaded computations (each chromosome is separately 

analyzed and HATSEQ exploits the use of memory mapped 

files that allow the analysis of any read-depth).

HATSEQ can be applied in three types of study-designs, 

namely: 1) one-sample analysis where only one sample is 

available and sequenced; 2) multi-sample analysis, where 

the sequenced reads of the experimental samples can be 

analyzed compared to the reads of one or more negative 

control samples; and 3) combined ChIP-Seq and ChIP-on-

chip analysis where an overlap of candidate ROI between the 

experimental replicates can be marked.

Functionalities of hATseQ
Data processing and region identification
HATSEQ detects ROIs from mapped sequenced reads or 

normalized probe intensities. For the analysis of NGS data, 

it processes Bam or Pileup files to detect ROIs using the 

read-depth at base pair position. For ChIP-on-chip data it 

uses preprocessed files, eg, by MAT (model-based analysis 

of tiling-arrays).11 As an example, both NGS data and ChIP-

on-chip files can be loaded using the GUI and simultaneously 

analyzed with or without controls.

Pathway analysis
HATSEQ integrates two pathway enrichment analyses based 

on the genes that are selected by: 1) having a selected ROI 

as the closest ROI; or 2) having a detected ROI in their pro-

moter region (the 2000 nucleotids [nt] region upstream of the 

transcriptional-start-site [TSS]). Pathway annotations (gene-

sets) are extracted from the Molecular Signature Database 

(MSigDB).12 The enrichment of each pathway for the selected 

set of genes is computed using the hypergeometric distribution 

and is corrected for multiple testing using False Discovery 

Rate (FDR)13 or Familywise error rate (FWER).14

Motif analysis
HATSEQ gives the opportunity to find enriched motifs 

in sequences derived from: 1) the detected ROIs; and 

2) the promoter regions (2000 nt upstream from TSS) 

of the genes that have a selected ROI as closest ROI. It 

uses the generalized extreme value probability method,15 

which detects significantly over-represented ungapped 

words of f ixed length. It consequently outputs the 

over-represented sequences that are corrected for mul-

tiple testing using FDR13 or FWER.14 Finally, for each 

detected motif, the Position Weight Matrices (PWMs) are 

correlated with annotated PWMs from TRANSFAC (tran-

scription factor database) and JASPAR and subsequently 

listed if the correlation is larger than 0.6.

support for different species
HATSEQ supports gene-annotation (for eg, ROI gene-

 associations) and chromosome files for the species that 

are available on UCSC (http://hgdownload.cse.ucsc.edu). 

Species that are available on UCSC can be chosen using the 

GUI, which are then automatically downloaded, or alterna-

tively, species can be uploaded selectively.

statistical summaries and visualization of results
HATSEQ reports the detected ROIs, including the neighbor-

ing genes, and summary statistics, in tables. For example, one 

can extract the percentage of ROIs that are in close vicinity 

to the TSS of a gene, or the percentage of ROIs that contain 

a user defined motif. The genes for the detected ROIs can 

be visualized by the circular-graph, Circos, or as custom 

tracks in UCSC.

equipment
software
HATSEQ is a stand-alone application that is implemented in 

C++ and Matlab Mathworks. To run HATSEQ, an installation 

of Matlab or the freely available Matlab Compiler Runtime 

(MCR) is mandatory.

hardware
HATSEQ runs on any x86–64 system with Microsoft (MS)-

Windows, UNIX, Linux, or Mac OS, and a minimum of 

4 GB of random access memory (RAM) is required. The 

analyzed ChIP-Seq examples in this manuscript were run 

on MS-Windows 7 with a 1.87 GHz central processing unit 

(CPU) and 4 GB RAM. The runtime, with default parameter 

settings, was approximately 10 minutes to detect ROIs in 

1 million reads (1.87 GHz), an estimate that increases with 

sequence coverage.
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Results and discussion
Method comparison
To evaluate the performance of HATSEQ, we used two 

publically available ChIP-Seq data-sets (DNA binding of 

CCAAT enhancer binding protein alpha [C/EBPA] and 

trimethylation of H3 lysine 4 [H3K4me] experiment) and 

compared the results against two other state-of-the-art 

methods: MACS (version 1.42)4 and FindPeaks (version 4).5 

MACS uses a dynamic Poisson distribution to detect peaks 

and empirically estimates the FDR for each detected peak, 

whereas FindPeaks assumes a triangle based distribution in 

which fragments have a minimum, maximum, and a user 

defined median size.

The first ChIP-Seq data-set contains massively parallel 

sequenced DNA-fragments bound by the transcription factor 

C/EBPA (cell-line U937, Gene Expression Omnibus [GEO] 

accession: GSM722423) and is used to evaluate the results 

for one-sample analysis. The sequencing data of this C/EBPA 

experiment is aligned using BWA (Burrows–Wheeler Aligner) 

(human genome build 19; hg19).16 To avoid the detection of 

peaks that are the result of technical variation, we discarded 

genomic positions with a read-depth smaller than ten. With 

MACS we detected 50,525 ROIs, using default parameters 

(bandwidth of 300 nt at the 1 × 10−5 significance level). Find-

Peaks detected 75,839 ROIs using the default parameters (tri-

angle distance low =100 nt, median =200 nt, high =300 nt with 

minimal allowed coverage 0.001). With HATSEQ we detected 

32,735 ROIs using a bandwidth (fragment size) of 300 nt, but 

with FWER significance level 0.05. Eighty-seven percent of the 

32,735 HATSEQ ROIs (28,413 ROIs) were also detected by 

either of the two other methods, and 85% (27,862 ROIs) of the 

HATSEQ ROIs are common among all methods (Figure 1A).

Although there was a high overlap of detected ROIs 

between the three methods, HATSEQ better delineates the 

peak boundaries in the data. This can be concluded from: 

1) regions detected by HATSEQ showed on average higher 

read-depth (HATSEQ: 30.1, MACS: 13.1, and FindPeaks: 5; 

Figure 2C); 2) regions detected by HATSEQ are consistently 

smaller in length compared to the other methods (average 

region length HATSEQ: 153 nt, MACS: 350 nt, and Find-

Peaks: 1,679 nt; Figure 2A); and 3) the read depth differences 

at the boundary of a region are more extreme for HATSEQ 

regions (Figure 2B). We illustrate in Figure 1B the superior 

behavior of HATSEQ for ChIP-seq data for a region on 
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Figure 1 Venn diagram and an illustration of a detected rOi for hATseQ, MACs, and FindPeaks.
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chromosome 1 of the C/EBPA experiment. It can clearly be 

seen that HATSEQ most accurately detects the three regions 

of interest, among a region close to the TSS of IL6R which 

is a known target of C/EBPA.17 Remarkably, FindPeaks 

detects one large region of interest, and MACS overshoots 

the boundaries of the three regions. Among the 4,322 ROIs 

that were solely detected by HATSEQ, we detected ROIs that 

were in close proximity of known target C/EBPA genes, such 

as CD718 and ACSL.19

The second analysis involved sequence data from an 

H3K4me ChIP-Seq experiment (cell-line K562, data avail-

able from University of Washington) in which functional 

loci based on the chromatin signatures can be identified, ie, 

H3K4me peaks at the promoter of active genes.20 These his-

tone marks are known to generate a bimodal distribution of the 

signal (read-depth) which is caused by the spacing between 

the histones that interact with the DNA.21 We evaluated the 

results of HATSEQ, MACS, and FindPeaks for the identifi-

cation of H3K4me peaks by normalizing it against a control 

replicate. Sequence alignment was performed using BWA 

(hg19)16 with default parameter settings. HATSEQ detected 

14,616 statistically significant regions of interest, MACS: 

10,694, and FindPeaks: 9,471 (Figure 1C) by comparing the 

input versus the negative control.

The regions detected by HATSEQ that overlap with 

either of the two other methods (9,286 ROIs, 63.5%) 

again showed that HATSEQ better delineates the peaks, 

although less pronounced, as in the previous experiment: 

1) the HATSEQ regions have higher read-depths (average 

read-depth: HATSEQ: 16.1, MACS: 15.5, and FindPeaks: 

10.5; Figure 3C); 2) HATSEQ regions are smaller in 

length (average region length: HATSEQ: 1,096 nt, MACS: 

1,751 nt, and FindPeaks: 4,297 nt; Figure 3A), and 3) the 

difference of  read-depth at the border of the region is 

0

H
A

T
S

E
Q

M
A

C
S

F
in

dP
ea

ks

HATSEQ

MACS

FindPeaks

Random regions

HATSEQ

MACS

FindPeaks

Random regions

1

2

3

Position relative to 5' end (nt)

L
en

g
th

 o
f 

d
et

ec
te

d
 r

eg
io

n
s 

(n
t)

4

5

6

0
−500 0 300

10

20

30

A
ve

ra
g

e 
re

ad
-d

ep
th 40

50

5'

60

Position relative to 3' end (nt)

0
−300 0 500

10

20

30

A
ve

ra
g

e 
re

ad
-d

ep
th 40

50

3'

60

Average read-depth detected regions

0
0 10 20 30 40 50 60 70 80 90 100

1,000

2,000

3,000F
re

q
u

en
cy

4,000

5,000

6,000

7,000

8,000

P<0.001

P<0.001

× 104
A B C

Figure 2 rOi statistics for the C/ePBA experiment.
Notes: statistics for the detected rOis by hATseQ, MACs, and FindPeaks (red, green, and blue, respectively) for the C/ePBA experiment. (A) Boxplot illustrating the region 
length of the detected regions. (B) Average read-depth across the rOi boundaries with respect to the 5´ (left panel) and 3´ end (right panel). The average read-depths are 
calculated per nucleotide position after aligning the detected rOis at their 5´ and 3´ ends, respectively. The solid line represents the alignment of the 32,735, 50,525, and 
75,839 rOis detected by hATseQ, MACs, and FindPeaks, respectively. The dashed line represents the alignment of the 4,322, 7,866, and 33,359 rOis that are uniquely 
detected by hATseQ, MACs, and FindPeaks, respectively. (C) Distribution of the average read-depth for all the detected regions using hATseQ, MACs, and FindPeaks.
Abbreviations: hATseQ, hypergeometric analysis of tiling-array and sequence data; MACs, model-based analysis for ChiP-seq; nt, nucleotide; rOi, region of interest; 
ChiP-seq, chromatin immunoprecipitation sequencing; C/ePBA, CCAAT enhancer binding protein alpha; nt, nucleotids.

0

H
A

T
S

E
Q

M
A

C
S

F
in

dP
ea

ks

HATSEQ

MACS

FindPeaks

Random regions

HATSEQ

MACS

FindPeaks

Random regions

0.5

1

1.5

Position relative to 5' end (nt)

L
en

g
th

 o
f 

d
et

ec
te

d
 r

eg
io

n
s 

(n
t)

2

2.5

0
−500 0 1,000

5

10

A
ve

ra
g

e 
re

ad
-d

ep
th

15

20
5'

25

Position relative to 3' end (nt)

−1.0 0 500

A
ve

ra
g

e 
re

ad
-d

ep
th

3'

0

5

10

15

20

25

Average read-depth detected regions

0
0 10 20 30 40 50 60 70 80 90 100

500

F
re

q
u

en
cy

1,000

1,500
P<0.001

P<0.001

× 104
A B C

Figure 3 rOi statistics for the h3K4me experiment.
Notes: statistics for the detected rOis by hATseQ, MACs and FindPeaks (red, green, and blue, respectively) for the h3K4me experiment. (A) Boxplot illustrating the 
region length of the detected regions. (B) Average read-depth across the rOi boundaries with respect to the 5´ (left panel) and 3´ end (right panel). The average read-depths 
are calculated per nucleotide position after aligning the detected rOis at their 5´ and 3´ ends, respectively. The solid line represents the alignment of the 14,616, 10,694, and 
9,471 rOis detected by hATseQ, MACs, and FindPeaks, respectively. The dashed line represents the alignment of the 5,330, 1,305, and 601 rOis that are uniquely detected 
by hATseQ, MACs, and FindPeaks, respectively. (C) Distribution of the average read-depth for all the detected regions using hATseQ, MACs, and FindPeaks.
Abbreviations: hATseQ, hypergeometric analysis of tiling-array and sequence data; MACs, model-based analysis for ChiP-seq; nt, nucleotide; rOi, region of interest; 
h3K4me, trimethylation of h3 lysine 4; ChiP-seq, chromatin immunoprecipitation sequencing; nt, nucleotids.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2013:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

60

Taskesen et al

much more pronounced for HATSEQ regions (Figure 3B). 

Figure 1D illustrates a region on chromosome 22 in close 

proximity of SDF2L1. Clearly, HATSEQ delineates the 

boundaries of the peak region best. To assess the validity 

of the detected regions by HATSEQ, we tested the 14,616 

ROIs for bimodality using the statistical dip test of unimo-

dality.22 A significant bimodal distribution (FDR #0.05) 

was detected in 12,897 ROIs (88.2%). This illustrates that 

the large majority of detected ROIs contains the expected 

bimodal distribution.

Taken together, HATSEQ showed better performance 

in delineating peak boundaries for the detected ROIs when 

compared to other ChIP-Seq methodologies, such as MACS 

and FindPeaks. For each method we used the default settings, 

although transcription factor binding and histone modifica-

tions can differ substantially in their properties (eg, length 

of the region) yet specifying the optimal parameters in an 

unbiased way is difficult. We also tested whether HATSEQ 

can also detect ROIs in genomic areas with low-read depth by 

re-analyzing the C/EBPA ChIP-seq data set without remov-

ing any genomic positions with read-depth smaller than ten. 

We detected 42,046 significant regions (instead of 32,735 

ROIs) which clearly illustrates the capability of HATSEQ 

to detect ROIs in low-read depth genomic areas. Note that 

applications of HATSEQ are not limited to the presented 

NGS ChIP data but can be applied to other types of data, 

such as MeDIP-seq,23 DNase-seq (DNase I hypersensitive 

sites sequencing),24 and MBD-seq (methyl-CpG binding 

domain protein sequencing).25

A case study with hATseQ
To illustrate the functionalities of HATSEQ, we used a publicly 

available ChIP-Seq data-set (GEO accession: GSE15353) 

where the DNA-fragments bound by the transcription factor 

STAT1 (Signal Transducer and Activator of Transcription 1)26 

were massively parallel sequenced. For transcription factor 
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Figure 4 hATseQ results for the sTAT1 case study.
Notes: The hATseQ results of the sTAT1 experiments using iFn-γ stimulated human hela s3 cells compared to seven unstimulated human hela s3 cells. (A) Bar graph 
plot that illustrates an rOi that is detected in the promoter of STAT3, and seen across six experiments. The blue bars depict the total number of reads per base pair position, 
indicated by the left y-axis. The red line illustrates the read-depth significance score Q(g), which reports how often reads were part of the statistically significant region, 
indicated by the right y-axis. The green bar illustrates the binding site of the expected sTAT1 motif. (C) The top enriched motifs, among the 511 rOis detected across two or 
more replicates. (D) Circos plot illustrating the genes, for which the closest detected rOi is detected among two or more experiments. A line connects selected genes, based 
on the chromosomal location with the number of experiments that an rOi is detected in. The colors indicate the chromosomal location of the genes. (E) Pathway analysis 
illustrates the enrichment for curated gene-sets, computational gene-sets, gene ontology and positional gene-sets (with a maximum of ten gene-sets in each category).
Abbreviations: hATseQ, hypergeometric analysis of tiling-array and sequence data; iFn, interferon; rOi, region of interest; UCsC, University of California, santa Cruz; 
sTAT1,  signal Transducer and Activator of Transcription 1.
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STAT1, it has been described that it binds to STAT motifs,27 and 

a well-known target gene is the STAT3 gene.28 We compared 

data obtained from six interferon-γ (IFN-γ) stimulated HeLa 

S3 cells and compared those to seven unstimulated human 

HeLa S3 cells. After the alignment using BWA,16 we detected 

in total 2,502 ROIs with HATSEQ (sizes between 11 nt and 

669 nt, median: 81 nt) using default parameter settings (α 
#0.05 and read-depth $10). These ROIs showed significant 

binding in the stimulated cells but not in the unstimulated 

cells, which were subsequently investigated using HATSEQ’s 

motif analysis. Thus, from the design of the experiment, it is 

expected that the detected ROIs should contain STAT bind-

ing sites. The detected motifs, among the sequences of the 

2,502 ROIs correspond to the STAT1 motif according to our 

results (P-value ,9.1 × 10−6), and also according to MEME 

(Multiple EM for Motif Elicitation)29 and TOMTOM.30 The 

2,502 detected ROIs are annotated with 914 unique genes. 

These 914 genes included the STAT3 gene, which was asso-

ciated with one of the most significantly detected ROI. This 

ROI was also strongly enriched for the STAT1 motif sequence 

(P-value ,2.13 × 10−177, Figure 4A and B). However, not all 

detected ROIs contained the STAT binding site. Therefore 

we searched for ROIs that were detected across two or more 

replicates. We found 511 ROIs that were consistently detected, 

ie, in two or more replicates (Figure 4D). The HATSEQ motif 

analyses on these 511 consistently detected ROIs showed 

a strong enrichment for the STAT binding site (Figure 4C), 

and it was seen in 88% of these ROIs. In addition, using 

HATSEQ we found 47 enriched MSigDB pathways for these 

511 ROIs including a pathway that involve STAT3 and its 

targets (Figure 4E).

Conclusion
In this study we present HATSEQ, a tool to analyze both 

tiling-array and NGS data. We applied HATSEQ to analyze 

a STAT1 ChIP-Sequence experiment and detected ROIs that 

were enriched for the STAT1 motif. In addition, we detected 

unknown as well as previously reported direct target genes 

of STAT1: STAT2,31 STAT3,28 IRF1,32 IL-27,33 PTK2,34 and 

IFNAR2.35 HATSEQ can be used for single sample analysis 

or with a set of reference samples whereas the expected 

regions of interest can be of any size. We showed for both 

the C/EBPA and H3K4me ChIP-Seq experiments that 

HATSEQ better delineates the peak boundaries. HATSEQ 

is a powerful tool with an intuitive GUI that lowers the bar-

rier for researchers to detect regions of interest in genomic 

signals, and integrates an analysis of these detected regions 

to enhance their functional role.

Availability
The HATSEQ program is freely available on http://

hema13.erasmusmc.nl/index.php/HATSEQ or http://www.

erasmusmc.nl/hematologie/. The required Matlab Compiler 

Runtime (MCR) executable is provided.
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