Basic Prompting ################ LLMlight is a library for lightweight, modular and efficient use of LLM and RAG workflows. Below are quick examples using the main functions of the library. .. code-block:: python from LLMlight import LLMlight # Initialize an LLMlight client (default settings) client = LLMlight(model='mistralai/mistral-small-3.2') # Ask a question using a language model response = client.prompt('What is the capital of France?') print(response) Working with Files (PDFs) ################################ Add the content of a PDF to memory: .. code-block:: python # Import library from LLMlight import LLMlight # Initialize model and memory client = LLMlight(model='mistralai/mistral-small-3.2') client.memory_init(file_path='knowledge_base.mp4') # Add a PDF file to the memory (extracts and chunks text automatically) client.memory_add(files='https://erdogant.github.io/publications/papers/2020%20-%20Taskesen%20et%20al%20-%20HNet%20Hypergeometric%20Networks.pdf') # Store memory to disk client.memory_save(overwrite=True) # Query on the new knowledge response = client.prompt('Summarize the document.') print(response) Create Summaries ################################### Creating summaries can be done using the summary functionality. In this example, a sliding window with the last 5 chunks is kept in memory and expanded. .. code-block:: python # Import library from LLMlight import LLMlight # Initialize client = LLMlight(model='mistralai/mistral-small-3.2', top_chunks=5) # Add multiple PDF files to the database url = 'https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf' pdf_text = client.read_pdf(url) # Create summary text_summary = client.summarize(context=pdf_text) .. include:: add_bottom.add